source: S-port/trunk/Drivers/CMSIS/Core/Include/cmsis_armclang.h@ 1

Last change on this file since 1 was 1, checked in by AlexLir, 2 years ago
File size: 55.2 KB
Line 
1/**************************************************************************//**
2 * @file cmsis_armclang.h
3 * @brief CMSIS compiler armclang (Arm Compiler 6) header file
4 * @version V5.0.4
5 * @date 10. January 2018
6 ******************************************************************************/
7/*
8 * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25/*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
26
27#ifndef __CMSIS_ARMCLANG_H
28#define __CMSIS_ARMCLANG_H
29
30#pragma clang system_header /* treat file as system include file */
31
32#ifndef __ARM_COMPAT_H
33#include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */
34#endif
35
36/* CMSIS compiler specific defines */
37#ifndef __ASM
38 #define __ASM __asm
39#endif
40#ifndef __INLINE
41 #define __INLINE __inline
42#endif
43#ifndef __STATIC_INLINE
44 #define __STATIC_INLINE static __inline
45#endif
46#ifndef __STATIC_FORCEINLINE
47 #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline
48#endif
49#ifndef __NO_RETURN
50 #define __NO_RETURN __attribute__((__noreturn__))
51#endif
52#ifndef __USED
53 #define __USED __attribute__((used))
54#endif
55#ifndef __WEAK
56 #define __WEAK __attribute__((weak))
57#endif
58#ifndef __PACKED
59 #define __PACKED __attribute__((packed, aligned(1)))
60#endif
61#ifndef __PACKED_STRUCT
62 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
63#endif
64#ifndef __PACKED_UNION
65 #define __PACKED_UNION union __attribute__((packed, aligned(1)))
66#endif
67#ifndef __UNALIGNED_UINT32 /* deprecated */
68 #pragma clang diagnostic push
69 #pragma clang diagnostic ignored "-Wpacked"
70/*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
71 struct __attribute__((packed)) T_UINT32 { uint32_t v; };
72 #pragma clang diagnostic pop
73 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
74#endif
75#ifndef __UNALIGNED_UINT16_WRITE
76 #pragma clang diagnostic push
77 #pragma clang diagnostic ignored "-Wpacked"
78/*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
79 __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
80 #pragma clang diagnostic pop
81 #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
82#endif
83#ifndef __UNALIGNED_UINT16_READ
84 #pragma clang diagnostic push
85 #pragma clang diagnostic ignored "-Wpacked"
86/*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
87 __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
88 #pragma clang diagnostic pop
89 #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
90#endif
91#ifndef __UNALIGNED_UINT32_WRITE
92 #pragma clang diagnostic push
93 #pragma clang diagnostic ignored "-Wpacked"
94/*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
95 __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
96 #pragma clang diagnostic pop
97 #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
98#endif
99#ifndef __UNALIGNED_UINT32_READ
100 #pragma clang diagnostic push
101 #pragma clang diagnostic ignored "-Wpacked"
102/*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
103 __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
104 #pragma clang diagnostic pop
105 #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
106#endif
107#ifndef __ALIGNED
108 #define __ALIGNED(x) __attribute__((aligned(x)))
109#endif
110#ifndef __RESTRICT
111 #define __RESTRICT __restrict
112#endif
113
114
115/* ########################### Core Function Access ########################### */
116/** \ingroup CMSIS_Core_FunctionInterface
117 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
118 @{
119 */
120
121/**
122 \brief Enable IRQ Interrupts
123 \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
124 Can only be executed in Privileged modes.
125 */
126/* intrinsic void __enable_irq(); see arm_compat.h */
127
128
129/**
130 \brief Disable IRQ Interrupts
131 \details Disables IRQ interrupts by setting the I-bit in the CPSR.
132 Can only be executed in Privileged modes.
133 */
134/* intrinsic void __disable_irq(); see arm_compat.h */
135
136
137/**
138 \brief Get Control Register
139 \details Returns the content of the Control Register.
140 \return Control Register value
141 */
142__STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
143{
144 uint32_t result;
145
146 __ASM volatile ("MRS %0, control" : "=r" (result) );
147 return(result);
148}
149
150
151#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
152/**
153 \brief Get Control Register (non-secure)
154 \details Returns the content of the non-secure Control Register when in secure mode.
155 \return non-secure Control Register value
156 */
157__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
158{
159 uint32_t result;
160
161 __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
162 return(result);
163}
164#endif
165
166
167/**
168 \brief Set Control Register
169 \details Writes the given value to the Control Register.
170 \param [in] control Control Register value to set
171 */
172__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
173{
174 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
175}
176
177
178#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
179/**
180 \brief Set Control Register (non-secure)
181 \details Writes the given value to the non-secure Control Register when in secure state.
182 \param [in] control Control Register value to set
183 */
184__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
185{
186 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
187}
188#endif
189
190
191/**
192 \brief Get IPSR Register
193 \details Returns the content of the IPSR Register.
194 \return IPSR Register value
195 */
196__STATIC_FORCEINLINE uint32_t __get_IPSR(void)
197{
198 uint32_t result;
199
200 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
201 return(result);
202}
203
204
205/**
206 \brief Get APSR Register
207 \details Returns the content of the APSR Register.
208 \return APSR Register value
209 */
210__STATIC_FORCEINLINE uint32_t __get_APSR(void)
211{
212 uint32_t result;
213
214 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
215 return(result);
216}
217
218
219/**
220 \brief Get xPSR Register
221 \details Returns the content of the xPSR Register.
222 \return xPSR Register value
223 */
224__STATIC_FORCEINLINE uint32_t __get_xPSR(void)
225{
226 uint32_t result;
227
228 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
229 return(result);
230}
231
232
233/**
234 \brief Get Process Stack Pointer
235 \details Returns the current value of the Process Stack Pointer (PSP).
236 \return PSP Register value
237 */
238__STATIC_FORCEINLINE uint32_t __get_PSP(void)
239{
240 uint32_t result;
241
242 __ASM volatile ("MRS %0, psp" : "=r" (result) );
243 return(result);
244}
245
246
247#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
248/**
249 \brief Get Process Stack Pointer (non-secure)
250 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
251 \return PSP Register value
252 */
253__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
254{
255 uint32_t result;
256
257 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
258 return(result);
259}
260#endif
261
262
263/**
264 \brief Set Process Stack Pointer
265 \details Assigns the given value to the Process Stack Pointer (PSP).
266 \param [in] topOfProcStack Process Stack Pointer value to set
267 */
268__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
269{
270 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
271}
272
273
274#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
275/**
276 \brief Set Process Stack Pointer (non-secure)
277 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
278 \param [in] topOfProcStack Process Stack Pointer value to set
279 */
280__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
281{
282 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
283}
284#endif
285
286
287/**
288 \brief Get Main Stack Pointer
289 \details Returns the current value of the Main Stack Pointer (MSP).
290 \return MSP Register value
291 */
292__STATIC_FORCEINLINE uint32_t __get_MSP(void)
293{
294 uint32_t result;
295
296 __ASM volatile ("MRS %0, msp" : "=r" (result) );
297 return(result);
298}
299
300
301#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
302/**
303 \brief Get Main Stack Pointer (non-secure)
304 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
305 \return MSP Register value
306 */
307__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
308{
309 uint32_t result;
310
311 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
312 return(result);
313}
314#endif
315
316
317/**
318 \brief Set Main Stack Pointer
319 \details Assigns the given value to the Main Stack Pointer (MSP).
320 \param [in] topOfMainStack Main Stack Pointer value to set
321 */
322__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
323{
324 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
325}
326
327
328#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
329/**
330 \brief Set Main Stack Pointer (non-secure)
331 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
332 \param [in] topOfMainStack Main Stack Pointer value to set
333 */
334__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
335{
336 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
337}
338#endif
339
340
341#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
342/**
343 \brief Get Stack Pointer (non-secure)
344 \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
345 \return SP Register value
346 */
347__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
348{
349 uint32_t result;
350
351 __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
352 return(result);
353}
354
355
356/**
357 \brief Set Stack Pointer (non-secure)
358 \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
359 \param [in] topOfStack Stack Pointer value to set
360 */
361__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
362{
363 __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
364}
365#endif
366
367
368/**
369 \brief Get Priority Mask
370 \details Returns the current state of the priority mask bit from the Priority Mask Register.
371 \return Priority Mask value
372 */
373__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
374{
375 uint32_t result;
376
377 __ASM volatile ("MRS %0, primask" : "=r" (result) );
378 return(result);
379}
380
381
382#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
383/**
384 \brief Get Priority Mask (non-secure)
385 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
386 \return Priority Mask value
387 */
388__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
389{
390 uint32_t result;
391
392 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
393 return(result);
394}
395#endif
396
397
398/**
399 \brief Set Priority Mask
400 \details Assigns the given value to the Priority Mask Register.
401 \param [in] priMask Priority Mask
402 */
403__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
404{
405 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
406}
407
408
409#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
410/**
411 \brief Set Priority Mask (non-secure)
412 \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
413 \param [in] priMask Priority Mask
414 */
415__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
416{
417 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
418}
419#endif
420
421
422#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
423 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
424 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
425/**
426 \brief Enable FIQ
427 \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
428 Can only be executed in Privileged modes.
429 */
430#define __enable_fault_irq __enable_fiq /* see arm_compat.h */
431
432
433/**
434 \brief Disable FIQ
435 \details Disables FIQ interrupts by setting the F-bit in the CPSR.
436 Can only be executed in Privileged modes.
437 */
438#define __disable_fault_irq __disable_fiq /* see arm_compat.h */
439
440
441/**
442 \brief Get Base Priority
443 \details Returns the current value of the Base Priority register.
444 \return Base Priority register value
445 */
446__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
447{
448 uint32_t result;
449
450 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
451 return(result);
452}
453
454
455#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
456/**
457 \brief Get Base Priority (non-secure)
458 \details Returns the current value of the non-secure Base Priority register when in secure state.
459 \return Base Priority register value
460 */
461__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
462{
463 uint32_t result;
464
465 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
466 return(result);
467}
468#endif
469
470
471/**
472 \brief Set Base Priority
473 \details Assigns the given value to the Base Priority register.
474 \param [in] basePri Base Priority value to set
475 */
476__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
477{
478 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
479}
480
481
482#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
483/**
484 \brief Set Base Priority (non-secure)
485 \details Assigns the given value to the non-secure Base Priority register when in secure state.
486 \param [in] basePri Base Priority value to set
487 */
488__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
489{
490 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
491}
492#endif
493
494
495/**
496 \brief Set Base Priority with condition
497 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
498 or the new value increases the BASEPRI priority level.
499 \param [in] basePri Base Priority value to set
500 */
501__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
502{
503 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
504}
505
506
507/**
508 \brief Get Fault Mask
509 \details Returns the current value of the Fault Mask register.
510 \return Fault Mask register value
511 */
512__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
513{
514 uint32_t result;
515
516 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
517 return(result);
518}
519
520
521#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
522/**
523 \brief Get Fault Mask (non-secure)
524 \details Returns the current value of the non-secure Fault Mask register when in secure state.
525 \return Fault Mask register value
526 */
527__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
528{
529 uint32_t result;
530
531 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
532 return(result);
533}
534#endif
535
536
537/**
538 \brief Set Fault Mask
539 \details Assigns the given value to the Fault Mask register.
540 \param [in] faultMask Fault Mask value to set
541 */
542__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
543{
544 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
545}
546
547
548#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
549/**
550 \brief Set Fault Mask (non-secure)
551 \details Assigns the given value to the non-secure Fault Mask register when in secure state.
552 \param [in] faultMask Fault Mask value to set
553 */
554__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
555{
556 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
557}
558#endif
559
560#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
561 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
562 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
563
564
565#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
566 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
567
568/**
569 \brief Get Process Stack Pointer Limit
570 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
571 Stack Pointer Limit register hence zero is returned always in non-secure
572 mode.
573
574 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
575 \return PSPLIM Register value
576 */
577__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
578{
579#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
580 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
581 // without main extensions, the non-secure PSPLIM is RAZ/WI
582 return 0U;
583#else
584 uint32_t result;
585 __ASM volatile ("MRS %0, psplim" : "=r" (result) );
586 return result;
587#endif
588}
589
590#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
591/**
592 \brief Get Process Stack Pointer Limit (non-secure)
593 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
594 Stack Pointer Limit register hence zero is returned always in non-secure
595 mode.
596
597 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
598 \return PSPLIM Register value
599 */
600__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
601{
602#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
603 // without main extensions, the non-secure PSPLIM is RAZ/WI
604 return 0U;
605#else
606 uint32_t result;
607 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
608 return result;
609#endif
610}
611#endif
612
613
614/**
615 \brief Set Process Stack Pointer Limit
616 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
617 Stack Pointer Limit register hence the write is silently ignored in non-secure
618 mode.
619
620 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
621 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
622 */
623__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
624{
625#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
626 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
627 // without main extensions, the non-secure PSPLIM is RAZ/WI
628 (void)ProcStackPtrLimit;
629#else
630 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
631#endif
632}
633
634
635#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
636/**
637 \brief Set Process Stack Pointer (non-secure)
638 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
639 Stack Pointer Limit register hence the write is silently ignored in non-secure
640 mode.
641
642 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
643 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
644 */
645__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
646{
647#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
648 // without main extensions, the non-secure PSPLIM is RAZ/WI
649 (void)ProcStackPtrLimit;
650#else
651 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
652#endif
653}
654#endif
655
656
657/**
658 \brief Get Main Stack Pointer Limit
659 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
660 Stack Pointer Limit register hence zero is returned always.
661
662 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
663 \return MSPLIM Register value
664 */
665__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
666{
667#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
668 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
669 // without main extensions, the non-secure MSPLIM is RAZ/WI
670 return 0U;
671#else
672 uint32_t result;
673 __ASM volatile ("MRS %0, msplim" : "=r" (result) );
674 return result;
675#endif
676}
677
678
679#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
680/**
681 \brief Get Main Stack Pointer Limit (non-secure)
682 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
683 Stack Pointer Limit register hence zero is returned always.
684
685 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
686 \return MSPLIM Register value
687 */
688__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
689{
690#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
691 // without main extensions, the non-secure MSPLIM is RAZ/WI
692 return 0U;
693#else
694 uint32_t result;
695 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
696 return result;
697#endif
698}
699#endif
700
701
702/**
703 \brief Set Main Stack Pointer Limit
704 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
705 Stack Pointer Limit register hence the write is silently ignored.
706
707 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
708 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
709 */
710__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
711{
712#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
713 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
714 // without main extensions, the non-secure MSPLIM is RAZ/WI
715 (void)MainStackPtrLimit;
716#else
717 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
718#endif
719}
720
721
722#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
723/**
724 \brief Set Main Stack Pointer Limit (non-secure)
725 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
726 Stack Pointer Limit register hence the write is silently ignored.
727
728 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
729 \param [in] MainStackPtrLimit Main Stack Pointer value to set
730 */
731__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
732{
733#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
734 // without main extensions, the non-secure MSPLIM is RAZ/WI
735 (void)MainStackPtrLimit;
736#else
737 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
738#endif
739}
740#endif
741
742#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
743 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
744
745/**
746 \brief Get FPSCR
747 \details Returns the current value of the Floating Point Status/Control register.
748 \return Floating Point Status/Control register value
749 */
750#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
751 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
752#define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr
753#else
754#define __get_FPSCR() ((uint32_t)0U)
755#endif
756
757/**
758 \brief Set FPSCR
759 \details Assigns the given value to the Floating Point Status/Control register.
760 \param [in] fpscr Floating Point Status/Control value to set
761 */
762#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
763 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
764#define __set_FPSCR __builtin_arm_set_fpscr
765#else
766#define __set_FPSCR(x) ((void)(x))
767#endif
768
769
770/*@} end of CMSIS_Core_RegAccFunctions */
771
772
773/* ########################## Core Instruction Access ######################### */
774/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
775 Access to dedicated instructions
776 @{
777*/
778
779/* Define macros for porting to both thumb1 and thumb2.
780 * For thumb1, use low register (r0-r7), specified by constraint "l"
781 * Otherwise, use general registers, specified by constraint "r" */
782#if defined (__thumb__) && !defined (__thumb2__)
783#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
784#define __CMSIS_GCC_USE_REG(r) "l" (r)
785#else
786#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
787#define __CMSIS_GCC_USE_REG(r) "r" (r)
788#endif
789
790/**
791 \brief No Operation
792 \details No Operation does nothing. This instruction can be used for code alignment purposes.
793 */
794#define __NOP __builtin_arm_nop
795
796/**
797 \brief Wait For Interrupt
798 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
799 */
800#define __WFI __builtin_arm_wfi
801
802
803/**
804 \brief Wait For Event
805 \details Wait For Event is a hint instruction that permits the processor to enter
806 a low-power state until one of a number of events occurs.
807 */
808#define __WFE __builtin_arm_wfe
809
810
811/**
812 \brief Send Event
813 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
814 */
815#define __SEV __builtin_arm_sev
816
817
818/**
819 \brief Instruction Synchronization Barrier
820 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
821 so that all instructions following the ISB are fetched from cache or memory,
822 after the instruction has been completed.
823 */
824#define __ISB() __builtin_arm_isb(0xF);
825
826/**
827 \brief Data Synchronization Barrier
828 \details Acts as a special kind of Data Memory Barrier.
829 It completes when all explicit memory accesses before this instruction complete.
830 */
831#define __DSB() __builtin_arm_dsb(0xF);
832
833
834/**
835 \brief Data Memory Barrier
836 \details Ensures the apparent order of the explicit memory operations before
837 and after the instruction, without ensuring their completion.
838 */
839#define __DMB() __builtin_arm_dmb(0xF);
840
841
842/**
843 \brief Reverse byte order (32 bit)
844 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
845 \param [in] value Value to reverse
846 \return Reversed value
847 */
848#define __REV(value) __builtin_bswap32(value)
849
850
851/**
852 \brief Reverse byte order (16 bit)
853 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
854 \param [in] value Value to reverse
855 \return Reversed value
856 */
857#define __REV16(value) __ROR(__REV(value), 16)
858
859
860/**
861 \brief Reverse byte order (16 bit)
862 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
863 \param [in] value Value to reverse
864 \return Reversed value
865 */
866#define __REVSH(value) (int16_t)__builtin_bswap16(value)
867
868
869/**
870 \brief Rotate Right in unsigned value (32 bit)
871 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
872 \param [in] op1 Value to rotate
873 \param [in] op2 Number of Bits to rotate
874 \return Rotated value
875 */
876__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
877{
878 op2 %= 32U;
879 if (op2 == 0U)
880 {
881 return op1;
882 }
883 return (op1 >> op2) | (op1 << (32U - op2));
884}
885
886
887/**
888 \brief Breakpoint
889 \details Causes the processor to enter Debug state.
890 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
891 \param [in] value is ignored by the processor.
892 If required, a debugger can use it to store additional information about the breakpoint.
893 */
894#define __BKPT(value) __ASM volatile ("bkpt "#value)
895
896
897/**
898 \brief Reverse bit order of value
899 \details Reverses the bit order of the given value.
900 \param [in] value Value to reverse
901 \return Reversed value
902 */
903#define __RBIT __builtin_arm_rbit
904
905/**
906 \brief Count leading zeros
907 \details Counts the number of leading zeros of a data value.
908 \param [in] value Value to count the leading zeros
909 \return number of leading zeros in value
910 */
911#define __CLZ (uint8_t)__builtin_clz
912
913
914#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
915 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
916 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
917 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
918/**
919 \brief LDR Exclusive (8 bit)
920 \details Executes a exclusive LDR instruction for 8 bit value.
921 \param [in] ptr Pointer to data
922 \return value of type uint8_t at (*ptr)
923 */
924#define __LDREXB (uint8_t)__builtin_arm_ldrex
925
926
927/**
928 \brief LDR Exclusive (16 bit)
929 \details Executes a exclusive LDR instruction for 16 bit values.
930 \param [in] ptr Pointer to data
931 \return value of type uint16_t at (*ptr)
932 */
933#define __LDREXH (uint16_t)__builtin_arm_ldrex
934
935
936/**
937 \brief LDR Exclusive (32 bit)
938 \details Executes a exclusive LDR instruction for 32 bit values.
939 \param [in] ptr Pointer to data
940 \return value of type uint32_t at (*ptr)
941 */
942#define __LDREXW (uint32_t)__builtin_arm_ldrex
943
944
945/**
946 \brief STR Exclusive (8 bit)
947 \details Executes a exclusive STR instruction for 8 bit values.
948 \param [in] value Value to store
949 \param [in] ptr Pointer to location
950 \return 0 Function succeeded
951 \return 1 Function failed
952 */
953#define __STREXB (uint32_t)__builtin_arm_strex
954
955
956/**
957 \brief STR Exclusive (16 bit)
958 \details Executes a exclusive STR instruction for 16 bit values.
959 \param [in] value Value to store
960 \param [in] ptr Pointer to location
961 \return 0 Function succeeded
962 \return 1 Function failed
963 */
964#define __STREXH (uint32_t)__builtin_arm_strex
965
966
967/**
968 \brief STR Exclusive (32 bit)
969 \details Executes a exclusive STR instruction for 32 bit values.
970 \param [in] value Value to store
971 \param [in] ptr Pointer to location
972 \return 0 Function succeeded
973 \return 1 Function failed
974 */
975#define __STREXW (uint32_t)__builtin_arm_strex
976
977
978/**
979 \brief Remove the exclusive lock
980 \details Removes the exclusive lock which is created by LDREX.
981 */
982#define __CLREX __builtin_arm_clrex
983
984#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
985 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
986 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
987 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
988
989
990#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
991 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
992 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
993
994/**
995 \brief Signed Saturate
996 \details Saturates a signed value.
997 \param [in] value Value to be saturated
998 \param [in] sat Bit position to saturate to (1..32)
999 \return Saturated value
1000 */
1001#define __SSAT __builtin_arm_ssat
1002
1003
1004/**
1005 \brief Unsigned Saturate
1006 \details Saturates an unsigned value.
1007 \param [in] value Value to be saturated
1008 \param [in] sat Bit position to saturate to (0..31)
1009 \return Saturated value
1010 */
1011#define __USAT __builtin_arm_usat
1012
1013
1014/**
1015 \brief Rotate Right with Extend (32 bit)
1016 \details Moves each bit of a bitstring right by one bit.
1017 The carry input is shifted in at the left end of the bitstring.
1018 \param [in] value Value to rotate
1019 \return Rotated value
1020 */
1021__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1022{
1023 uint32_t result;
1024
1025 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1026 return(result);
1027}
1028
1029
1030/**
1031 \brief LDRT Unprivileged (8 bit)
1032 \details Executes a Unprivileged LDRT instruction for 8 bit value.
1033 \param [in] ptr Pointer to data
1034 \return value of type uint8_t at (*ptr)
1035 */
1036__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1037{
1038 uint32_t result;
1039
1040 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1041 return ((uint8_t) result); /* Add explicit type cast here */
1042}
1043
1044
1045/**
1046 \brief LDRT Unprivileged (16 bit)
1047 \details Executes a Unprivileged LDRT instruction for 16 bit values.
1048 \param [in] ptr Pointer to data
1049 \return value of type uint16_t at (*ptr)
1050 */
1051__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1052{
1053 uint32_t result;
1054
1055 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1056 return ((uint16_t) result); /* Add explicit type cast here */
1057}
1058
1059
1060/**
1061 \brief LDRT Unprivileged (32 bit)
1062 \details Executes a Unprivileged LDRT instruction for 32 bit values.
1063 \param [in] ptr Pointer to data
1064 \return value of type uint32_t at (*ptr)
1065 */
1066__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1067{
1068 uint32_t result;
1069
1070 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1071 return(result);
1072}
1073
1074
1075/**
1076 \brief STRT Unprivileged (8 bit)
1077 \details Executes a Unprivileged STRT instruction for 8 bit values.
1078 \param [in] value Value to store
1079 \param [in] ptr Pointer to location
1080 */
1081__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1082{
1083 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1084}
1085
1086
1087/**
1088 \brief STRT Unprivileged (16 bit)
1089 \details Executes a Unprivileged STRT instruction for 16 bit values.
1090 \param [in] value Value to store
1091 \param [in] ptr Pointer to location
1092 */
1093__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1094{
1095 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1096}
1097
1098
1099/**
1100 \brief STRT Unprivileged (32 bit)
1101 \details Executes a Unprivileged STRT instruction for 32 bit values.
1102 \param [in] value Value to store
1103 \param [in] ptr Pointer to location
1104 */
1105__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1106{
1107 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1108}
1109
1110#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1111 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1112 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1113
1114/**
1115 \brief Signed Saturate
1116 \details Saturates a signed value.
1117 \param [in] value Value to be saturated
1118 \param [in] sat Bit position to saturate to (1..32)
1119 \return Saturated value
1120 */
1121__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1122{
1123 if ((sat >= 1U) && (sat <= 32U))
1124 {
1125 const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1126 const int32_t min = -1 - max ;
1127 if (val > max)
1128 {
1129 return max;
1130 }
1131 else if (val < min)
1132 {
1133 return min;
1134 }
1135 }
1136 return val;
1137}
1138
1139/**
1140 \brief Unsigned Saturate
1141 \details Saturates an unsigned value.
1142 \param [in] value Value to be saturated
1143 \param [in] sat Bit position to saturate to (0..31)
1144 \return Saturated value
1145 */
1146__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1147{
1148 if (sat <= 31U)
1149 {
1150 const uint32_t max = ((1U << sat) - 1U);
1151 if (val > (int32_t)max)
1152 {
1153 return max;
1154 }
1155 else if (val < 0)
1156 {
1157 return 0U;
1158 }
1159 }
1160 return (uint32_t)val;
1161}
1162
1163#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1164 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1165 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1166
1167
1168#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1169 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1170/**
1171 \brief Load-Acquire (8 bit)
1172 \details Executes a LDAB instruction for 8 bit value.
1173 \param [in] ptr Pointer to data
1174 \return value of type uint8_t at (*ptr)
1175 */
1176__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1177{
1178 uint32_t result;
1179
1180 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1181 return ((uint8_t) result);
1182}
1183
1184
1185/**
1186 \brief Load-Acquire (16 bit)
1187 \details Executes a LDAH instruction for 16 bit values.
1188 \param [in] ptr Pointer to data
1189 \return value of type uint16_t at (*ptr)
1190 */
1191__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1192{
1193 uint32_t result;
1194
1195 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1196 return ((uint16_t) result);
1197}
1198
1199
1200/**
1201 \brief Load-Acquire (32 bit)
1202 \details Executes a LDA instruction for 32 bit values.
1203 \param [in] ptr Pointer to data
1204 \return value of type uint32_t at (*ptr)
1205 */
1206__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1207{
1208 uint32_t result;
1209
1210 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1211 return(result);
1212}
1213
1214
1215/**
1216 \brief Store-Release (8 bit)
1217 \details Executes a STLB instruction for 8 bit values.
1218 \param [in] value Value to store
1219 \param [in] ptr Pointer to location
1220 */
1221__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1222{
1223 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1224}
1225
1226
1227/**
1228 \brief Store-Release (16 bit)
1229 \details Executes a STLH instruction for 16 bit values.
1230 \param [in] value Value to store
1231 \param [in] ptr Pointer to location
1232 */
1233__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1234{
1235 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1236}
1237
1238
1239/**
1240 \brief Store-Release (32 bit)
1241 \details Executes a STL instruction for 32 bit values.
1242 \param [in] value Value to store
1243 \param [in] ptr Pointer to location
1244 */
1245__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1246{
1247 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1248}
1249
1250
1251/**
1252 \brief Load-Acquire Exclusive (8 bit)
1253 \details Executes a LDAB exclusive instruction for 8 bit value.
1254 \param [in] ptr Pointer to data
1255 \return value of type uint8_t at (*ptr)
1256 */
1257#define __LDAEXB (uint8_t)__builtin_arm_ldaex
1258
1259
1260/**
1261 \brief Load-Acquire Exclusive (16 bit)
1262 \details Executes a LDAH exclusive instruction for 16 bit values.
1263 \param [in] ptr Pointer to data
1264 \return value of type uint16_t at (*ptr)
1265 */
1266#define __LDAEXH (uint16_t)__builtin_arm_ldaex
1267
1268
1269/**
1270 \brief Load-Acquire Exclusive (32 bit)
1271 \details Executes a LDA exclusive instruction for 32 bit values.
1272 \param [in] ptr Pointer to data
1273 \return value of type uint32_t at (*ptr)
1274 */
1275#define __LDAEX (uint32_t)__builtin_arm_ldaex
1276
1277
1278/**
1279 \brief Store-Release Exclusive (8 bit)
1280 \details Executes a STLB exclusive instruction for 8 bit values.
1281 \param [in] value Value to store
1282 \param [in] ptr Pointer to location
1283 \return 0 Function succeeded
1284 \return 1 Function failed
1285 */
1286#define __STLEXB (uint32_t)__builtin_arm_stlex
1287
1288
1289/**
1290 \brief Store-Release Exclusive (16 bit)
1291 \details Executes a STLH exclusive instruction for 16 bit values.
1292 \param [in] value Value to store
1293 \param [in] ptr Pointer to location
1294 \return 0 Function succeeded
1295 \return 1 Function failed
1296 */
1297#define __STLEXH (uint32_t)__builtin_arm_stlex
1298
1299
1300/**
1301 \brief Store-Release Exclusive (32 bit)
1302 \details Executes a STL exclusive instruction for 32 bit values.
1303 \param [in] value Value to store
1304 \param [in] ptr Pointer to location
1305 \return 0 Function succeeded
1306 \return 1 Function failed
1307 */
1308#define __STLEX (uint32_t)__builtin_arm_stlex
1309
1310#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1311 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1312
1313/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1314
1315
1316/* ################### Compiler specific Intrinsics ########################### */
1317/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1318 Access to dedicated SIMD instructions
1319 @{
1320*/
1321
1322#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1323
1324__STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1325{
1326 uint32_t result;
1327
1328 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1329 return(result);
1330}
1331
1332__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1333{
1334 uint32_t result;
1335
1336 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1337 return(result);
1338}
1339
1340__STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1341{
1342 uint32_t result;
1343
1344 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1345 return(result);
1346}
1347
1348__STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1349{
1350 uint32_t result;
1351
1352 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1353 return(result);
1354}
1355
1356__STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1357{
1358 uint32_t result;
1359
1360 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1361 return(result);
1362}
1363
1364__STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1365{
1366 uint32_t result;
1367
1368 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1369 return(result);
1370}
1371
1372
1373__STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1374{
1375 uint32_t result;
1376
1377 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1378 return(result);
1379}
1380
1381__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1382{
1383 uint32_t result;
1384
1385 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1386 return(result);
1387}
1388
1389__STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1390{
1391 uint32_t result;
1392
1393 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1394 return(result);
1395}
1396
1397__STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1398{
1399 uint32_t result;
1400
1401 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1402 return(result);
1403}
1404
1405__STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1406{
1407 uint32_t result;
1408
1409 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1410 return(result);
1411}
1412
1413__STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1414{
1415 uint32_t result;
1416
1417 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1418 return(result);
1419}
1420
1421
1422__STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1423{
1424 uint32_t result;
1425
1426 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1427 return(result);
1428}
1429
1430__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1431{
1432 uint32_t result;
1433
1434 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1435 return(result);
1436}
1437
1438__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1439{
1440 uint32_t result;
1441
1442 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1443 return(result);
1444}
1445
1446__STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1447{
1448 uint32_t result;
1449
1450 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1451 return(result);
1452}
1453
1454__STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1455{
1456 uint32_t result;
1457
1458 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1459 return(result);
1460}
1461
1462__STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1463{
1464 uint32_t result;
1465
1466 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1467 return(result);
1468}
1469
1470__STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1471{
1472 uint32_t result;
1473
1474 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1475 return(result);
1476}
1477
1478__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1479{
1480 uint32_t result;
1481
1482 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1483 return(result);
1484}
1485
1486__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1487{
1488 uint32_t result;
1489
1490 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1491 return(result);
1492}
1493
1494__STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1495{
1496 uint32_t result;
1497
1498 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1499 return(result);
1500}
1501
1502__STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1503{
1504 uint32_t result;
1505
1506 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1507 return(result);
1508}
1509
1510__STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1511{
1512 uint32_t result;
1513
1514 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1515 return(result);
1516}
1517
1518__STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1519{
1520 uint32_t result;
1521
1522 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1523 return(result);
1524}
1525
1526__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1527{
1528 uint32_t result;
1529
1530 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1531 return(result);
1532}
1533
1534__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1535{
1536 uint32_t result;
1537
1538 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1539 return(result);
1540}
1541
1542__STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1543{
1544 uint32_t result;
1545
1546 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1547 return(result);
1548}
1549
1550__STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1551{
1552 uint32_t result;
1553
1554 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1555 return(result);
1556}
1557
1558__STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1559{
1560 uint32_t result;
1561
1562 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1563 return(result);
1564}
1565
1566__STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1567{
1568 uint32_t result;
1569
1570 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1571 return(result);
1572}
1573
1574__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1575{
1576 uint32_t result;
1577
1578 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1579 return(result);
1580}
1581
1582__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1583{
1584 uint32_t result;
1585
1586 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1587 return(result);
1588}
1589
1590__STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1591{
1592 uint32_t result;
1593
1594 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1595 return(result);
1596}
1597
1598__STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1599{
1600 uint32_t result;
1601
1602 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1603 return(result);
1604}
1605
1606__STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1607{
1608 uint32_t result;
1609
1610 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1611 return(result);
1612}
1613
1614__STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1615{
1616 uint32_t result;
1617
1618 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1619 return(result);
1620}
1621
1622__STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1623{
1624 uint32_t result;
1625
1626 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1627 return(result);
1628}
1629
1630#define __SSAT16(ARG1,ARG2) \
1631({ \
1632 int32_t __RES, __ARG1 = (ARG1); \
1633 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1634 __RES; \
1635 })
1636
1637#define __USAT16(ARG1,ARG2) \
1638({ \
1639 uint32_t __RES, __ARG1 = (ARG1); \
1640 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1641 __RES; \
1642 })
1643
1644__STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1645{
1646 uint32_t result;
1647
1648 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1649 return(result);
1650}
1651
1652__STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1653{
1654 uint32_t result;
1655
1656 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1657 return(result);
1658}
1659
1660__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1661{
1662 uint32_t result;
1663
1664 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1665 return(result);
1666}
1667
1668__STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1669{
1670 uint32_t result;
1671
1672 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1673 return(result);
1674}
1675
1676__STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1677{
1678 uint32_t result;
1679
1680 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1681 return(result);
1682}
1683
1684__STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1685{
1686 uint32_t result;
1687
1688 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1689 return(result);
1690}
1691
1692__STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1693{
1694 uint32_t result;
1695
1696 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1697 return(result);
1698}
1699
1700__STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1701{
1702 uint32_t result;
1703
1704 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1705 return(result);
1706}
1707
1708__STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1709{
1710 union llreg_u{
1711 uint32_t w32[2];
1712 uint64_t w64;
1713 } llr;
1714 llr.w64 = acc;
1715
1716#ifndef __ARMEB__ /* Little endian */
1717 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1718#else /* Big endian */
1719 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1720#endif
1721
1722 return(llr.w64);
1723}
1724
1725__STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1726{
1727 union llreg_u{
1728 uint32_t w32[2];
1729 uint64_t w64;
1730 } llr;
1731 llr.w64 = acc;
1732
1733#ifndef __ARMEB__ /* Little endian */
1734 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1735#else /* Big endian */
1736 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1737#endif
1738
1739 return(llr.w64);
1740}
1741
1742__STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1743{
1744 uint32_t result;
1745
1746 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1747 return(result);
1748}
1749
1750__STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1751{
1752 uint32_t result;
1753
1754 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1755 return(result);
1756}
1757
1758__STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1759{
1760 uint32_t result;
1761
1762 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1763 return(result);
1764}
1765
1766__STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1767{
1768 uint32_t result;
1769
1770 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1771 return(result);
1772}
1773
1774__STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1775{
1776 union llreg_u{
1777 uint32_t w32[2];
1778 uint64_t w64;
1779 } llr;
1780 llr.w64 = acc;
1781
1782#ifndef __ARMEB__ /* Little endian */
1783 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1784#else /* Big endian */
1785 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1786#endif
1787
1788 return(llr.w64);
1789}
1790
1791__STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1792{
1793 union llreg_u{
1794 uint32_t w32[2];
1795 uint64_t w64;
1796 } llr;
1797 llr.w64 = acc;
1798
1799#ifndef __ARMEB__ /* Little endian */
1800 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1801#else /* Big endian */
1802 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1803#endif
1804
1805 return(llr.w64);
1806}
1807
1808__STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
1809{
1810 uint32_t result;
1811
1812 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1813 return(result);
1814}
1815
1816__STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
1817{
1818 int32_t result;
1819
1820 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1821 return(result);
1822}
1823
1824__STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
1825{
1826 int32_t result;
1827
1828 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1829 return(result);
1830}
1831
1832#if 0
1833#define __PKHBT(ARG1,ARG2,ARG3) \
1834({ \
1835 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1836 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1837 __RES; \
1838 })
1839
1840#define __PKHTB(ARG1,ARG2,ARG3) \
1841({ \
1842 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1843 if (ARG3 == 0) \
1844 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
1845 else \
1846 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1847 __RES; \
1848 })
1849#endif
1850
1851#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
1852 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
1853
1854#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
1855 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
1856
1857__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1858{
1859 int32_t result;
1860
1861 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
1862 return(result);
1863}
1864
1865#endif /* (__ARM_FEATURE_DSP == 1) */
1866/*@} end of group CMSIS_SIMD_intrinsics */
1867
1868
1869#endif /* __CMSIS_ARMCLANG_H */
Note: See TracBrowser for help on using the repository browser.