1 | /******************************************************************************
|
---|
2 | * @file arm_math.h
|
---|
3 | * @brief Public header file for CMSIS DSP LibraryU
|
---|
4 | * @version V1.5.3
|
---|
5 | * @date 10. January 2018
|
---|
6 | ******************************************************************************/
|
---|
7 | /*
|
---|
8 | * Copyright (c) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
---|
9 | *
|
---|
10 | * SPDX-License-Identifier: Apache-2.0
|
---|
11 | *
|
---|
12 | * Licensed under the Apache License, Version 2.0 (the License); you may
|
---|
13 | * not use this file except in compliance with the License.
|
---|
14 | * You may obtain a copy of the License at
|
---|
15 | *
|
---|
16 | * www.apache.org/licenses/LICENSE-2.0
|
---|
17 | *
|
---|
18 | * Unless required by applicable law or agreed to in writing, software
|
---|
19 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
---|
20 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
21 | * See the License for the specific language governing permissions and
|
---|
22 | * limitations under the License.
|
---|
23 | */
|
---|
24 |
|
---|
25 | /**
|
---|
26 | \mainpage CMSIS DSP Software Library
|
---|
27 | *
|
---|
28 | * Introduction
|
---|
29 | * ------------
|
---|
30 | *
|
---|
31 | * This user manual describes the CMSIS DSP software library,
|
---|
32 | * a suite of common signal processing functions for use on Cortex-M processor based devices.
|
---|
33 | *
|
---|
34 | * The library is divided into a number of functions each covering a specific category:
|
---|
35 | * - Basic math functions
|
---|
36 | * - Fast math functions
|
---|
37 | * - Complex math functions
|
---|
38 | * - Filters
|
---|
39 | * - Matrix functions
|
---|
40 | * - Transforms
|
---|
41 | * - Motor control functions
|
---|
42 | * - Statistical functions
|
---|
43 | * - Support functions
|
---|
44 | * - Interpolation functions
|
---|
45 | *
|
---|
46 | * The library has separate functions for operating on 8-bit integers, 16-bit integers,
|
---|
47 | * 32-bit integer and 32-bit floating-point values.
|
---|
48 | *
|
---|
49 | * Using the Library
|
---|
50 | * ------------
|
---|
51 | *
|
---|
52 | * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
|
---|
53 | * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit)
|
---|
54 | * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit)
|
---|
55 | * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit)
|
---|
56 | * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on)
|
---|
57 | * - arm_cortexM7l_math.lib (Cortex-M7, Little endian)
|
---|
58 | * - arm_cortexM7b_math.lib (Cortex-M7, Big endian)
|
---|
59 | * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit)
|
---|
60 | * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit)
|
---|
61 | * - arm_cortexM4l_math.lib (Cortex-M4, Little endian)
|
---|
62 | * - arm_cortexM4b_math.lib (Cortex-M4, Big endian)
|
---|
63 | * - arm_cortexM3l_math.lib (Cortex-M3, Little endian)
|
---|
64 | * - arm_cortexM3b_math.lib (Cortex-M3, Big endian)
|
---|
65 | * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian)
|
---|
66 | * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian)
|
---|
67 | * - arm_ARMv8MBLl_math.lib (Armv8-M Baseline, Little endian)
|
---|
68 | * - arm_ARMv8MMLl_math.lib (Armv8-M Mainline, Little endian)
|
---|
69 | * - arm_ARMv8MMLlfsp_math.lib (Armv8-M Mainline, Little endian, Single Precision Floating Point Unit)
|
---|
70 | * - arm_ARMv8MMLld_math.lib (Armv8-M Mainline, Little endian, DSP instructions)
|
---|
71 | * - arm_ARMv8MMLldfsp_math.lib (Armv8-M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit)
|
---|
72 | *
|
---|
73 | * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
|
---|
74 | * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
|
---|
75 | * public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
|
---|
76 | * Define the appropriate preprocessor macro ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
|
---|
77 | * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
|
---|
78 | * For Armv8-M cores define preprocessor macro ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML.
|
---|
79 | * Set preprocessor macro __DSP_PRESENT if Armv8-M Mainline core supports DSP instructions.
|
---|
80 | *
|
---|
81 | *
|
---|
82 | * Examples
|
---|
83 | * --------
|
---|
84 | *
|
---|
85 | * The library ships with a number of examples which demonstrate how to use the library functions.
|
---|
86 | *
|
---|
87 | * Toolchain Support
|
---|
88 | * ------------
|
---|
89 | *
|
---|
90 | * The library has been developed and tested with MDK version 5.14.0.0
|
---|
91 | * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
|
---|
92 | *
|
---|
93 | * Building the Library
|
---|
94 | * ------------
|
---|
95 | *
|
---|
96 | * The library installer contains a project file to rebuild libraries on MDK toolchain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
|
---|
97 | * - arm_cortexM_math.uvprojx
|
---|
98 | *
|
---|
99 | *
|
---|
100 | * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional preprocessor macros detailed above.
|
---|
101 | *
|
---|
102 | * Preprocessor Macros
|
---|
103 | * ------------
|
---|
104 | *
|
---|
105 | * Each library project have different preprocessor macros.
|
---|
106 | *
|
---|
107 | * - UNALIGNED_SUPPORT_DISABLE:
|
---|
108 | *
|
---|
109 | * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
|
---|
110 | *
|
---|
111 | * - ARM_MATH_BIG_ENDIAN:
|
---|
112 | *
|
---|
113 | * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
|
---|
114 | *
|
---|
115 | * - ARM_MATH_MATRIX_CHECK:
|
---|
116 | *
|
---|
117 | * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
|
---|
118 | *
|
---|
119 | * - ARM_MATH_ROUNDING:
|
---|
120 | *
|
---|
121 | * Define macro ARM_MATH_ROUNDING for rounding on support functions
|
---|
122 | *
|
---|
123 | * - ARM_MATH_CMx:
|
---|
124 | *
|
---|
125 | * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
|
---|
126 | * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
|
---|
127 | * ARM_MATH_CM7 for building the library on cortex-M7.
|
---|
128 | *
|
---|
129 | * - ARM_MATH_ARMV8MxL:
|
---|
130 | *
|
---|
131 | * Define macro ARM_MATH_ARMV8MBL for building the library on Armv8-M Baseline target, ARM_MATH_ARMV8MML for building library
|
---|
132 | * on Armv8-M Mainline target.
|
---|
133 | *
|
---|
134 | * - __FPU_PRESENT:
|
---|
135 | *
|
---|
136 | * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries.
|
---|
137 | *
|
---|
138 | * - __DSP_PRESENT:
|
---|
139 | *
|
---|
140 | * Initialize macro __DSP_PRESENT = 1 when Armv8-M Mainline core supports DSP instructions.
|
---|
141 | *
|
---|
142 | * <hr>
|
---|
143 | * CMSIS-DSP in ARM::CMSIS Pack
|
---|
144 | * -----------------------------
|
---|
145 | *
|
---|
146 | * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
|
---|
147 | * |File/Folder |Content |
|
---|
148 | * |------------------------------|------------------------------------------------------------------------|
|
---|
149 | * |\b CMSIS\\Documentation\\DSP | This documentation |
|
---|
150 | * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
|
---|
151 | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
|
---|
152 | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
|
---|
153 | *
|
---|
154 | * <hr>
|
---|
155 | * Revision History of CMSIS-DSP
|
---|
156 | * ------------
|
---|
157 | * Please refer to \ref ChangeLog_pg.
|
---|
158 | *
|
---|
159 | * Copyright Notice
|
---|
160 | * ------------
|
---|
161 | *
|
---|
162 | * Copyright (C) 2010-2015 Arm Limited. All rights reserved.
|
---|
163 | */
|
---|
164 |
|
---|
165 |
|
---|
166 | /**
|
---|
167 | * @defgroup groupMath Basic Math Functions
|
---|
168 | */
|
---|
169 |
|
---|
170 | /**
|
---|
171 | * @defgroup groupFastMath Fast Math Functions
|
---|
172 | * This set of functions provides a fast approximation to sine, cosine, and square root.
|
---|
173 | * As compared to most of the other functions in the CMSIS math library, the fast math functions
|
---|
174 | * operate on individual values and not arrays.
|
---|
175 | * There are separate functions for Q15, Q31, and floating-point data.
|
---|
176 | *
|
---|
177 | */
|
---|
178 |
|
---|
179 | /**
|
---|
180 | * @defgroup groupCmplxMath Complex Math Functions
|
---|
181 | * This set of functions operates on complex data vectors.
|
---|
182 | * The data in the complex arrays is stored in an interleaved fashion
|
---|
183 | * (real, imag, real, imag, ...).
|
---|
184 | * In the API functions, the number of samples in a complex array refers
|
---|
185 | * to the number of complex values; the array contains twice this number of
|
---|
186 | * real values.
|
---|
187 | */
|
---|
188 |
|
---|
189 | /**
|
---|
190 | * @defgroup groupFilters Filtering Functions
|
---|
191 | */
|
---|
192 |
|
---|
193 | /**
|
---|
194 | * @defgroup groupMatrix Matrix Functions
|
---|
195 | *
|
---|
196 | * This set of functions provides basic matrix math operations.
|
---|
197 | * The functions operate on matrix data structures. For example,
|
---|
198 | * the type
|
---|
199 | * definition for the floating-point matrix structure is shown
|
---|
200 | * below:
|
---|
201 | * <pre>
|
---|
202 | * typedef struct
|
---|
203 | * {
|
---|
204 | * uint16_t numRows; // number of rows of the matrix.
|
---|
205 | * uint16_t numCols; // number of columns of the matrix.
|
---|
206 | * float32_t *pData; // points to the data of the matrix.
|
---|
207 | * } arm_matrix_instance_f32;
|
---|
208 | * </pre>
|
---|
209 | * There are similar definitions for Q15 and Q31 data types.
|
---|
210 | *
|
---|
211 | * The structure specifies the size of the matrix and then points to
|
---|
212 | * an array of data. The array is of size <code>numRows X numCols</code>
|
---|
213 | * and the values are arranged in row order. That is, the
|
---|
214 | * matrix element (i, j) is stored at:
|
---|
215 | * <pre>
|
---|
216 | * pData[i*numCols + j]
|
---|
217 | * </pre>
|
---|
218 | *
|
---|
219 | * \par Init Functions
|
---|
220 | * There is an associated initialization function for each type of matrix
|
---|
221 | * data structure.
|
---|
222 | * The initialization function sets the values of the internal structure fields.
|
---|
223 | * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
|
---|
224 | * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
|
---|
225 | *
|
---|
226 | * \par
|
---|
227 | * Use of the initialization function is optional. However, if initialization function is used
|
---|
228 | * then the instance structure cannot be placed into a const data section.
|
---|
229 | * To place the instance structure in a const data
|
---|
230 | * section, manually initialize the data structure. For example:
|
---|
231 | * <pre>
|
---|
232 | * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
|
---|
233 | * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
|
---|
234 | * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
|
---|
235 | * </pre>
|
---|
236 | * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
|
---|
237 | * specifies the number of columns, and <code>pData</code> points to the
|
---|
238 | * data array.
|
---|
239 | *
|
---|
240 | * \par Size Checking
|
---|
241 | * By default all of the matrix functions perform size checking on the input and
|
---|
242 | * output matrices. For example, the matrix addition function verifies that the
|
---|
243 | * two input matrices and the output matrix all have the same number of rows and
|
---|
244 | * columns. If the size check fails the functions return:
|
---|
245 | * <pre>
|
---|
246 | * ARM_MATH_SIZE_MISMATCH
|
---|
247 | * </pre>
|
---|
248 | * Otherwise the functions return
|
---|
249 | * <pre>
|
---|
250 | * ARM_MATH_SUCCESS
|
---|
251 | * </pre>
|
---|
252 | * There is some overhead associated with this matrix size checking.
|
---|
253 | * The matrix size checking is enabled via the \#define
|
---|
254 | * <pre>
|
---|
255 | * ARM_MATH_MATRIX_CHECK
|
---|
256 | * </pre>
|
---|
257 | * within the library project settings. By default this macro is defined
|
---|
258 | * and size checking is enabled. By changing the project settings and
|
---|
259 | * undefining this macro size checking is eliminated and the functions
|
---|
260 | * run a bit faster. With size checking disabled the functions always
|
---|
261 | * return <code>ARM_MATH_SUCCESS</code>.
|
---|
262 | */
|
---|
263 |
|
---|
264 | /**
|
---|
265 | * @defgroup groupTransforms Transform Functions
|
---|
266 | */
|
---|
267 |
|
---|
268 | /**
|
---|
269 | * @defgroup groupController Controller Functions
|
---|
270 | */
|
---|
271 |
|
---|
272 | /**
|
---|
273 | * @defgroup groupStats Statistics Functions
|
---|
274 | */
|
---|
275 | /**
|
---|
276 | * @defgroup groupSupport Support Functions
|
---|
277 | */
|
---|
278 |
|
---|
279 | /**
|
---|
280 | * @defgroup groupInterpolation Interpolation Functions
|
---|
281 | * These functions perform 1- and 2-dimensional interpolation of data.
|
---|
282 | * Linear interpolation is used for 1-dimensional data and
|
---|
283 | * bilinear interpolation is used for 2-dimensional data.
|
---|
284 | */
|
---|
285 |
|
---|
286 | /**
|
---|
287 | * @defgroup groupExamples Examples
|
---|
288 | */
|
---|
289 | #ifndef _ARM_MATH_H
|
---|
290 | #define _ARM_MATH_H
|
---|
291 |
|
---|
292 | /* Compiler specific diagnostic adjustment */
|
---|
293 | #if defined ( __CC_ARM )
|
---|
294 |
|
---|
295 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
|
---|
296 |
|
---|
297 | #elif defined ( __GNUC__ )
|
---|
298 | #pragma GCC diagnostic push
|
---|
299 | #pragma GCC diagnostic ignored "-Wsign-conversion"
|
---|
300 | #pragma GCC diagnostic ignored "-Wconversion"
|
---|
301 | #pragma GCC diagnostic ignored "-Wunused-parameter"
|
---|
302 |
|
---|
303 | #elif defined ( __ICCARM__ )
|
---|
304 |
|
---|
305 | #elif defined ( __TI_ARM__ )
|
---|
306 |
|
---|
307 | #elif defined ( __CSMC__ )
|
---|
308 |
|
---|
309 | #elif defined ( __TASKING__ )
|
---|
310 |
|
---|
311 | #else
|
---|
312 | #error Unknown compiler
|
---|
313 | #endif
|
---|
314 |
|
---|
315 |
|
---|
316 | #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
|
---|
317 |
|
---|
318 | #if defined(ARM_MATH_CM7)
|
---|
319 | #include "core_cm7.h"
|
---|
320 | #define ARM_MATH_DSP
|
---|
321 | #elif defined (ARM_MATH_CM4)
|
---|
322 | #include "core_cm4.h"
|
---|
323 | #define ARM_MATH_DSP
|
---|
324 | #elif defined (ARM_MATH_CM3)
|
---|
325 | #include "core_cm3.h"
|
---|
326 | #elif defined (ARM_MATH_CM0)
|
---|
327 | #include "core_cm0.h"
|
---|
328 | #define ARM_MATH_CM0_FAMILY
|
---|
329 | #elif defined (ARM_MATH_CM0PLUS)
|
---|
330 | #include "core_cm0plus.h"
|
---|
331 | #define ARM_MATH_CM0_FAMILY
|
---|
332 | #elif defined (ARM_MATH_ARMV8MBL)
|
---|
333 | #include "core_armv8mbl.h"
|
---|
334 | #define ARM_MATH_CM0_FAMILY
|
---|
335 | #elif defined (ARM_MATH_ARMV8MML)
|
---|
336 | #include "core_armv8mml.h"
|
---|
337 | #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1))
|
---|
338 | #define ARM_MATH_DSP
|
---|
339 | #endif
|
---|
340 | #else
|
---|
341 | #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML"
|
---|
342 | #endif
|
---|
343 |
|
---|
344 | #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
|
---|
345 | #include "string.h"
|
---|
346 | #include "math.h"
|
---|
347 | #ifdef __cplusplus
|
---|
348 | extern "C"
|
---|
349 | {
|
---|
350 | #endif
|
---|
351 |
|
---|
352 |
|
---|
353 | /**
|
---|
354 | * @brief Macros required for reciprocal calculation in Normalized LMS
|
---|
355 | */
|
---|
356 |
|
---|
357 | #define DELTA_Q31 (0x100)
|
---|
358 | #define DELTA_Q15 0x5
|
---|
359 | #define INDEX_MASK 0x0000003F
|
---|
360 | #ifndef PI
|
---|
361 | #define PI 3.14159265358979f
|
---|
362 | #endif
|
---|
363 |
|
---|
364 | /**
|
---|
365 | * @brief Macros required for SINE and COSINE Fast math approximations
|
---|
366 | */
|
---|
367 |
|
---|
368 | #define FAST_MATH_TABLE_SIZE 512
|
---|
369 | #define FAST_MATH_Q31_SHIFT (32 - 10)
|
---|
370 | #define FAST_MATH_Q15_SHIFT (16 - 10)
|
---|
371 | #define CONTROLLER_Q31_SHIFT (32 - 9)
|
---|
372 | #define TABLE_SPACING_Q31 0x400000
|
---|
373 | #define TABLE_SPACING_Q15 0x80
|
---|
374 |
|
---|
375 | /**
|
---|
376 | * @brief Macros required for SINE and COSINE Controller functions
|
---|
377 | */
|
---|
378 | /* 1.31(q31) Fixed value of 2/360 */
|
---|
379 | /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
|
---|
380 | #define INPUT_SPACING 0xB60B61
|
---|
381 |
|
---|
382 | /**
|
---|
383 | * @brief Macro for Unaligned Support
|
---|
384 | */
|
---|
385 | #ifndef UNALIGNED_SUPPORT_DISABLE
|
---|
386 | #define ALIGN4
|
---|
387 | #else
|
---|
388 | #if defined (__GNUC__)
|
---|
389 | #define ALIGN4 __attribute__((aligned(4)))
|
---|
390 | #else
|
---|
391 | #define ALIGN4 __align(4)
|
---|
392 | #endif
|
---|
393 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
---|
394 |
|
---|
395 | /**
|
---|
396 | * @brief Error status returned by some functions in the library.
|
---|
397 | */
|
---|
398 |
|
---|
399 | typedef enum
|
---|
400 | {
|
---|
401 | ARM_MATH_SUCCESS = 0, /**< No error */
|
---|
402 | ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
|
---|
403 | ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
|
---|
404 | ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
|
---|
405 | ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
|
---|
406 | ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
|
---|
407 | ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
|
---|
408 | } arm_status;
|
---|
409 |
|
---|
410 | /**
|
---|
411 | * @brief 8-bit fractional data type in 1.7 format.
|
---|
412 | */
|
---|
413 | typedef int8_t q7_t;
|
---|
414 |
|
---|
415 | /**
|
---|
416 | * @brief 16-bit fractional data type in 1.15 format.
|
---|
417 | */
|
---|
418 | typedef int16_t q15_t;
|
---|
419 |
|
---|
420 | /**
|
---|
421 | * @brief 32-bit fractional data type in 1.31 format.
|
---|
422 | */
|
---|
423 | typedef int32_t q31_t;
|
---|
424 |
|
---|
425 | /**
|
---|
426 | * @brief 64-bit fractional data type in 1.63 format.
|
---|
427 | */
|
---|
428 | typedef int64_t q63_t;
|
---|
429 |
|
---|
430 | /**
|
---|
431 | * @brief 32-bit floating-point type definition.
|
---|
432 | */
|
---|
433 | typedef float float32_t;
|
---|
434 |
|
---|
435 | /**
|
---|
436 | * @brief 64-bit floating-point type definition.
|
---|
437 | */
|
---|
438 | typedef double float64_t;
|
---|
439 |
|
---|
440 | /**
|
---|
441 | * @brief definition to read/write two 16 bit values.
|
---|
442 | */
|
---|
443 | #if defined ( __CC_ARM )
|
---|
444 | #define __SIMD32_TYPE int32_t __packed
|
---|
445 | #define CMSIS_UNUSED __attribute__((unused))
|
---|
446 | #define CMSIS_INLINE __attribute__((always_inline))
|
---|
447 |
|
---|
448 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
|
---|
449 | #define __SIMD32_TYPE int32_t
|
---|
450 | #define CMSIS_UNUSED __attribute__((unused))
|
---|
451 | #define CMSIS_INLINE __attribute__((always_inline))
|
---|
452 |
|
---|
453 | #elif defined ( __GNUC__ )
|
---|
454 | #define __SIMD32_TYPE int32_t
|
---|
455 | #define CMSIS_UNUSED __attribute__((unused))
|
---|
456 | #define CMSIS_INLINE __attribute__((always_inline))
|
---|
457 |
|
---|
458 | #elif defined ( __ICCARM__ )
|
---|
459 | #define __SIMD32_TYPE int32_t __packed
|
---|
460 | #define CMSIS_UNUSED
|
---|
461 | #define CMSIS_INLINE
|
---|
462 |
|
---|
463 | #elif defined ( __TI_ARM__ )
|
---|
464 | #define __SIMD32_TYPE int32_t
|
---|
465 | #define CMSIS_UNUSED __attribute__((unused))
|
---|
466 | #define CMSIS_INLINE
|
---|
467 |
|
---|
468 | #elif defined ( __CSMC__ )
|
---|
469 | #define __SIMD32_TYPE int32_t
|
---|
470 | #define CMSIS_UNUSED
|
---|
471 | #define CMSIS_INLINE
|
---|
472 |
|
---|
473 | #elif defined ( __TASKING__ )
|
---|
474 | #define __SIMD32_TYPE __unaligned int32_t
|
---|
475 | #define CMSIS_UNUSED
|
---|
476 | #define CMSIS_INLINE
|
---|
477 |
|
---|
478 | #else
|
---|
479 | #error Unknown compiler
|
---|
480 | #endif
|
---|
481 |
|
---|
482 | #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
|
---|
483 | #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
|
---|
484 | #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
|
---|
485 | #define __SIMD64(addr) (*(int64_t **) & (addr))
|
---|
486 |
|
---|
487 | #if !defined (ARM_MATH_DSP)
|
---|
488 | /**
|
---|
489 | * @brief definition to pack two 16 bit values.
|
---|
490 | */
|
---|
491 | #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
|
---|
492 | (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
|
---|
493 | #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
|
---|
494 | (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
|
---|
495 |
|
---|
496 | #endif /* !defined (ARM_MATH_DSP) */
|
---|
497 |
|
---|
498 | /**
|
---|
499 | * @brief definition to pack four 8 bit values.
|
---|
500 | */
|
---|
501 | #ifndef ARM_MATH_BIG_ENDIAN
|
---|
502 |
|
---|
503 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
|
---|
504 | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
|
---|
505 | (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
|
---|
506 | (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
|
---|
507 | #else
|
---|
508 |
|
---|
509 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
|
---|
510 | (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
|
---|
511 | (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
|
---|
512 | (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
|
---|
513 |
|
---|
514 | #endif
|
---|
515 |
|
---|
516 |
|
---|
517 | /**
|
---|
518 | * @brief Clips Q63 to Q31 values.
|
---|
519 | */
|
---|
520 | CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31(
|
---|
521 | q63_t x)
|
---|
522 | {
|
---|
523 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
|
---|
524 | ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
|
---|
525 | }
|
---|
526 |
|
---|
527 | /**
|
---|
528 | * @brief Clips Q63 to Q15 values.
|
---|
529 | */
|
---|
530 | CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15(
|
---|
531 | q63_t x)
|
---|
532 | {
|
---|
533 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
|
---|
534 | ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
|
---|
535 | }
|
---|
536 |
|
---|
537 | /**
|
---|
538 | * @brief Clips Q31 to Q7 values.
|
---|
539 | */
|
---|
540 | CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7(
|
---|
541 | q31_t x)
|
---|
542 | {
|
---|
543 | return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
|
---|
544 | ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
|
---|
545 | }
|
---|
546 |
|
---|
547 | /**
|
---|
548 | * @brief Clips Q31 to Q15 values.
|
---|
549 | */
|
---|
550 | CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15(
|
---|
551 | q31_t x)
|
---|
552 | {
|
---|
553 | return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
|
---|
554 | ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
|
---|
555 | }
|
---|
556 |
|
---|
557 | /**
|
---|
558 | * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
|
---|
559 | */
|
---|
560 |
|
---|
561 | CMSIS_INLINE __STATIC_INLINE q63_t mult32x64(
|
---|
562 | q63_t x,
|
---|
563 | q31_t y)
|
---|
564 | {
|
---|
565 | return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
|
---|
566 | (((q63_t) (x >> 32) * y)));
|
---|
567 | }
|
---|
568 |
|
---|
569 | /**
|
---|
570 | * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
|
---|
571 | */
|
---|
572 |
|
---|
573 | CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31(
|
---|
574 | q31_t in,
|
---|
575 | q31_t * dst,
|
---|
576 | q31_t * pRecipTable)
|
---|
577 | {
|
---|
578 | q31_t out;
|
---|
579 | uint32_t tempVal;
|
---|
580 | uint32_t index, i;
|
---|
581 | uint32_t signBits;
|
---|
582 |
|
---|
583 | if (in > 0)
|
---|
584 | {
|
---|
585 | signBits = ((uint32_t) (__CLZ( in) - 1));
|
---|
586 | }
|
---|
587 | else
|
---|
588 | {
|
---|
589 | signBits = ((uint32_t) (__CLZ(-in) - 1));
|
---|
590 | }
|
---|
591 |
|
---|
592 | /* Convert input sample to 1.31 format */
|
---|
593 | in = (in << signBits);
|
---|
594 |
|
---|
595 | /* calculation of index for initial approximated Val */
|
---|
596 | index = (uint32_t)(in >> 24);
|
---|
597 | index = (index & INDEX_MASK);
|
---|
598 |
|
---|
599 | /* 1.31 with exp 1 */
|
---|
600 | out = pRecipTable[index];
|
---|
601 |
|
---|
602 | /* calculation of reciprocal value */
|
---|
603 | /* running approximation for two iterations */
|
---|
604 | for (i = 0U; i < 2U; i++)
|
---|
605 | {
|
---|
606 | tempVal = (uint32_t) (((q63_t) in * out) >> 31);
|
---|
607 | tempVal = 0x7FFFFFFFu - tempVal;
|
---|
608 | /* 1.31 with exp 1 */
|
---|
609 | /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
|
---|
610 | out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
|
---|
611 | }
|
---|
612 |
|
---|
613 | /* write output */
|
---|
614 | *dst = out;
|
---|
615 |
|
---|
616 | /* return num of signbits of out = 1/in value */
|
---|
617 | return (signBits + 1U);
|
---|
618 | }
|
---|
619 |
|
---|
620 |
|
---|
621 | /**
|
---|
622 | * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
|
---|
623 | */
|
---|
624 | CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15(
|
---|
625 | q15_t in,
|
---|
626 | q15_t * dst,
|
---|
627 | q15_t * pRecipTable)
|
---|
628 | {
|
---|
629 | q15_t out = 0;
|
---|
630 | uint32_t tempVal = 0;
|
---|
631 | uint32_t index = 0, i = 0;
|
---|
632 | uint32_t signBits = 0;
|
---|
633 |
|
---|
634 | if (in > 0)
|
---|
635 | {
|
---|
636 | signBits = ((uint32_t)(__CLZ( in) - 17));
|
---|
637 | }
|
---|
638 | else
|
---|
639 | {
|
---|
640 | signBits = ((uint32_t)(__CLZ(-in) - 17));
|
---|
641 | }
|
---|
642 |
|
---|
643 | /* Convert input sample to 1.15 format */
|
---|
644 | in = (in << signBits);
|
---|
645 |
|
---|
646 | /* calculation of index for initial approximated Val */
|
---|
647 | index = (uint32_t)(in >> 8);
|
---|
648 | index = (index & INDEX_MASK);
|
---|
649 |
|
---|
650 | /* 1.15 with exp 1 */
|
---|
651 | out = pRecipTable[index];
|
---|
652 |
|
---|
653 | /* calculation of reciprocal value */
|
---|
654 | /* running approximation for two iterations */
|
---|
655 | for (i = 0U; i < 2U; i++)
|
---|
656 | {
|
---|
657 | tempVal = (uint32_t) (((q31_t) in * out) >> 15);
|
---|
658 | tempVal = 0x7FFFu - tempVal;
|
---|
659 | /* 1.15 with exp 1 */
|
---|
660 | out = (q15_t) (((q31_t) out * tempVal) >> 14);
|
---|
661 | /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
|
---|
662 | }
|
---|
663 |
|
---|
664 | /* write output */
|
---|
665 | *dst = out;
|
---|
666 |
|
---|
667 | /* return num of signbits of out = 1/in value */
|
---|
668 | return (signBits + 1);
|
---|
669 | }
|
---|
670 |
|
---|
671 |
|
---|
672 | /*
|
---|
673 | * @brief C custom defined intrinsic function for M3 and M0 processors
|
---|
674 | */
|
---|
675 | #if !defined (ARM_MATH_DSP)
|
---|
676 |
|
---|
677 | /*
|
---|
678 | * @brief C custom defined QADD8 for M3 and M0 processors
|
---|
679 | */
|
---|
680 | CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8(
|
---|
681 | uint32_t x,
|
---|
682 | uint32_t y)
|
---|
683 | {
|
---|
684 | q31_t r, s, t, u;
|
---|
685 |
|
---|
686 | r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
|
---|
687 | s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
|
---|
688 | t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
|
---|
689 | u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
|
---|
690 |
|
---|
691 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
|
---|
692 | }
|
---|
693 |
|
---|
694 |
|
---|
695 | /*
|
---|
696 | * @brief C custom defined QSUB8 for M3 and M0 processors
|
---|
697 | */
|
---|
698 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8(
|
---|
699 | uint32_t x,
|
---|
700 | uint32_t y)
|
---|
701 | {
|
---|
702 | q31_t r, s, t, u;
|
---|
703 |
|
---|
704 | r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
|
---|
705 | s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
|
---|
706 | t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
|
---|
707 | u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
|
---|
708 |
|
---|
709 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
|
---|
710 | }
|
---|
711 |
|
---|
712 |
|
---|
713 | /*
|
---|
714 | * @brief C custom defined QADD16 for M3 and M0 processors
|
---|
715 | */
|
---|
716 | CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16(
|
---|
717 | uint32_t x,
|
---|
718 | uint32_t y)
|
---|
719 | {
|
---|
720 | /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
|
---|
721 | q31_t r = 0, s = 0;
|
---|
722 |
|
---|
723 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
---|
724 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
---|
725 |
|
---|
726 | return ((uint32_t)((s << 16) | (r )));
|
---|
727 | }
|
---|
728 |
|
---|
729 |
|
---|
730 | /*
|
---|
731 | * @brief C custom defined SHADD16 for M3 and M0 processors
|
---|
732 | */
|
---|
733 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16(
|
---|
734 | uint32_t x,
|
---|
735 | uint32_t y)
|
---|
736 | {
|
---|
737 | q31_t r, s;
|
---|
738 |
|
---|
739 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
---|
740 | s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
---|
741 |
|
---|
742 | return ((uint32_t)((s << 16) | (r )));
|
---|
743 | }
|
---|
744 |
|
---|
745 |
|
---|
746 | /*
|
---|
747 | * @brief C custom defined QSUB16 for M3 and M0 processors
|
---|
748 | */
|
---|
749 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16(
|
---|
750 | uint32_t x,
|
---|
751 | uint32_t y)
|
---|
752 | {
|
---|
753 | q31_t r, s;
|
---|
754 |
|
---|
755 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
---|
756 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
---|
757 |
|
---|
758 | return ((uint32_t)((s << 16) | (r )));
|
---|
759 | }
|
---|
760 |
|
---|
761 |
|
---|
762 | /*
|
---|
763 | * @brief C custom defined SHSUB16 for M3 and M0 processors
|
---|
764 | */
|
---|
765 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16(
|
---|
766 | uint32_t x,
|
---|
767 | uint32_t y)
|
---|
768 | {
|
---|
769 | q31_t r, s;
|
---|
770 |
|
---|
771 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
---|
772 | s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
---|
773 |
|
---|
774 | return ((uint32_t)((s << 16) | (r )));
|
---|
775 | }
|
---|
776 |
|
---|
777 |
|
---|
778 | /*
|
---|
779 | * @brief C custom defined QASX for M3 and M0 processors
|
---|
780 | */
|
---|
781 | CMSIS_INLINE __STATIC_INLINE uint32_t __QASX(
|
---|
782 | uint32_t x,
|
---|
783 | uint32_t y)
|
---|
784 | {
|
---|
785 | q31_t r, s;
|
---|
786 |
|
---|
787 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
---|
788 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
---|
789 |
|
---|
790 | return ((uint32_t)((s << 16) | (r )));
|
---|
791 | }
|
---|
792 |
|
---|
793 |
|
---|
794 | /*
|
---|
795 | * @brief C custom defined SHASX for M3 and M0 processors
|
---|
796 | */
|
---|
797 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX(
|
---|
798 | uint32_t x,
|
---|
799 | uint32_t y)
|
---|
800 | {
|
---|
801 | q31_t r, s;
|
---|
802 |
|
---|
803 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
---|
804 | s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
---|
805 |
|
---|
806 | return ((uint32_t)((s << 16) | (r )));
|
---|
807 | }
|
---|
808 |
|
---|
809 |
|
---|
810 | /*
|
---|
811 | * @brief C custom defined QSAX for M3 and M0 processors
|
---|
812 | */
|
---|
813 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX(
|
---|
814 | uint32_t x,
|
---|
815 | uint32_t y)
|
---|
816 | {
|
---|
817 | q31_t r, s;
|
---|
818 |
|
---|
819 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
---|
820 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
---|
821 |
|
---|
822 | return ((uint32_t)((s << 16) | (r )));
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | /*
|
---|
827 | * @brief C custom defined SHSAX for M3 and M0 processors
|
---|
828 | */
|
---|
829 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX(
|
---|
830 | uint32_t x,
|
---|
831 | uint32_t y)
|
---|
832 | {
|
---|
833 | q31_t r, s;
|
---|
834 |
|
---|
835 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
---|
836 | s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
---|
837 |
|
---|
838 | return ((uint32_t)((s << 16) | (r )));
|
---|
839 | }
|
---|
840 |
|
---|
841 |
|
---|
842 | /*
|
---|
843 | * @brief C custom defined SMUSDX for M3 and M0 processors
|
---|
844 | */
|
---|
845 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX(
|
---|
846 | uint32_t x,
|
---|
847 | uint32_t y)
|
---|
848 | {
|
---|
849 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
|
---|
850 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
|
---|
851 | }
|
---|
852 |
|
---|
853 | /*
|
---|
854 | * @brief C custom defined SMUADX for M3 and M0 processors
|
---|
855 | */
|
---|
856 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX(
|
---|
857 | uint32_t x,
|
---|
858 | uint32_t y)
|
---|
859 | {
|
---|
860 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
---|
861 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
|
---|
862 | }
|
---|
863 |
|
---|
864 |
|
---|
865 | /*
|
---|
866 | * @brief C custom defined QADD for M3 and M0 processors
|
---|
867 | */
|
---|
868 | CMSIS_INLINE __STATIC_INLINE int32_t __QADD(
|
---|
869 | int32_t x,
|
---|
870 | int32_t y)
|
---|
871 | {
|
---|
872 | return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
|
---|
873 | }
|
---|
874 |
|
---|
875 |
|
---|
876 | /*
|
---|
877 | * @brief C custom defined QSUB for M3 and M0 processors
|
---|
878 | */
|
---|
879 | CMSIS_INLINE __STATIC_INLINE int32_t __QSUB(
|
---|
880 | int32_t x,
|
---|
881 | int32_t y)
|
---|
882 | {
|
---|
883 | return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
|
---|
884 | }
|
---|
885 |
|
---|
886 |
|
---|
887 | /*
|
---|
888 | * @brief C custom defined SMLAD for M3 and M0 processors
|
---|
889 | */
|
---|
890 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD(
|
---|
891 | uint32_t x,
|
---|
892 | uint32_t y,
|
---|
893 | uint32_t sum)
|
---|
894 | {
|
---|
895 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
---|
896 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
|
---|
897 | ( ((q31_t)sum ) ) ));
|
---|
898 | }
|
---|
899 |
|
---|
900 |
|
---|
901 | /*
|
---|
902 | * @brief C custom defined SMLADX for M3 and M0 processors
|
---|
903 | */
|
---|
904 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX(
|
---|
905 | uint32_t x,
|
---|
906 | uint32_t y,
|
---|
907 | uint32_t sum)
|
---|
908 | {
|
---|
909 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
---|
910 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
---|
911 | ( ((q31_t)sum ) ) ));
|
---|
912 | }
|
---|
913 |
|
---|
914 |
|
---|
915 | /*
|
---|
916 | * @brief C custom defined SMLSDX for M3 and M0 processors
|
---|
917 | */
|
---|
918 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX(
|
---|
919 | uint32_t x,
|
---|
920 | uint32_t y,
|
---|
921 | uint32_t sum)
|
---|
922 | {
|
---|
923 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
|
---|
924 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
---|
925 | ( ((q31_t)sum ) ) ));
|
---|
926 | }
|
---|
927 |
|
---|
928 |
|
---|
929 | /*
|
---|
930 | * @brief C custom defined SMLALD for M3 and M0 processors
|
---|
931 | */
|
---|
932 | CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD(
|
---|
933 | uint32_t x,
|
---|
934 | uint32_t y,
|
---|
935 | uint64_t sum)
|
---|
936 | {
|
---|
937 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
|
---|
938 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
---|
939 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
|
---|
940 | ( ((q63_t)sum ) ) ));
|
---|
941 | }
|
---|
942 |
|
---|
943 |
|
---|
944 | /*
|
---|
945 | * @brief C custom defined SMLALDX for M3 and M0 processors
|
---|
946 | */
|
---|
947 | CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX(
|
---|
948 | uint32_t x,
|
---|
949 | uint32_t y,
|
---|
950 | uint64_t sum)
|
---|
951 | {
|
---|
952 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
|
---|
953 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
---|
954 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
---|
955 | ( ((q63_t)sum ) ) ));
|
---|
956 | }
|
---|
957 |
|
---|
958 |
|
---|
959 | /*
|
---|
960 | * @brief C custom defined SMUAD for M3 and M0 processors
|
---|
961 | */
|
---|
962 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD(
|
---|
963 | uint32_t x,
|
---|
964 | uint32_t y)
|
---|
965 | {
|
---|
966 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
---|
967 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
|
---|
968 | }
|
---|
969 |
|
---|
970 |
|
---|
971 | /*
|
---|
972 | * @brief C custom defined SMUSD for M3 and M0 processors
|
---|
973 | */
|
---|
974 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD(
|
---|
975 | uint32_t x,
|
---|
976 | uint32_t y)
|
---|
977 | {
|
---|
978 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
|
---|
979 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
|
---|
980 | }
|
---|
981 |
|
---|
982 |
|
---|
983 | /*
|
---|
984 | * @brief C custom defined SXTB16 for M3 and M0 processors
|
---|
985 | */
|
---|
986 | CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16(
|
---|
987 | uint32_t x)
|
---|
988 | {
|
---|
989 | return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
|
---|
990 | ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
|
---|
991 | }
|
---|
992 |
|
---|
993 | /*
|
---|
994 | * @brief C custom defined SMMLA for M3 and M0 processors
|
---|
995 | */
|
---|
996 | CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA(
|
---|
997 | int32_t x,
|
---|
998 | int32_t y,
|
---|
999 | int32_t sum)
|
---|
1000 | {
|
---|
1001 | return (sum + (int32_t) (((int64_t) x * y) >> 32));
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | #endif /* !defined (ARM_MATH_DSP) */
|
---|
1005 |
|
---|
1006 |
|
---|
1007 | /**
|
---|
1008 | * @brief Instance structure for the Q7 FIR filter.
|
---|
1009 | */
|
---|
1010 | typedef struct
|
---|
1011 | {
|
---|
1012 | uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
---|
1013 | q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
1014 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
1015 | } arm_fir_instance_q7;
|
---|
1016 |
|
---|
1017 | /**
|
---|
1018 | * @brief Instance structure for the Q15 FIR filter.
|
---|
1019 | */
|
---|
1020 | typedef struct
|
---|
1021 | {
|
---|
1022 | uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
---|
1023 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
1024 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
1025 | } arm_fir_instance_q15;
|
---|
1026 |
|
---|
1027 | /**
|
---|
1028 | * @brief Instance structure for the Q31 FIR filter.
|
---|
1029 | */
|
---|
1030 | typedef struct
|
---|
1031 | {
|
---|
1032 | uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
---|
1033 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
1034 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
---|
1035 | } arm_fir_instance_q31;
|
---|
1036 |
|
---|
1037 | /**
|
---|
1038 | * @brief Instance structure for the floating-point FIR filter.
|
---|
1039 | */
|
---|
1040 | typedef struct
|
---|
1041 | {
|
---|
1042 | uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
---|
1043 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
1044 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
---|
1045 | } arm_fir_instance_f32;
|
---|
1046 |
|
---|
1047 |
|
---|
1048 | /**
|
---|
1049 | * @brief Processing function for the Q7 FIR filter.
|
---|
1050 | * @param[in] S points to an instance of the Q7 FIR filter structure.
|
---|
1051 | * @param[in] pSrc points to the block of input data.
|
---|
1052 | * @param[out] pDst points to the block of output data.
|
---|
1053 | * @param[in] blockSize number of samples to process.
|
---|
1054 | */
|
---|
1055 | void arm_fir_q7(
|
---|
1056 | const arm_fir_instance_q7 * S,
|
---|
1057 | q7_t * pSrc,
|
---|
1058 | q7_t * pDst,
|
---|
1059 | uint32_t blockSize);
|
---|
1060 |
|
---|
1061 |
|
---|
1062 | /**
|
---|
1063 | * @brief Initialization function for the Q7 FIR filter.
|
---|
1064 | * @param[in,out] S points to an instance of the Q7 FIR structure.
|
---|
1065 | * @param[in] numTaps Number of filter coefficients in the filter.
|
---|
1066 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
1067 | * @param[in] pState points to the state buffer.
|
---|
1068 | * @param[in] blockSize number of samples that are processed.
|
---|
1069 | */
|
---|
1070 | void arm_fir_init_q7(
|
---|
1071 | arm_fir_instance_q7 * S,
|
---|
1072 | uint16_t numTaps,
|
---|
1073 | q7_t * pCoeffs,
|
---|
1074 | q7_t * pState,
|
---|
1075 | uint32_t blockSize);
|
---|
1076 |
|
---|
1077 |
|
---|
1078 | /**
|
---|
1079 | * @brief Processing function for the Q15 FIR filter.
|
---|
1080 | * @param[in] S points to an instance of the Q15 FIR structure.
|
---|
1081 | * @param[in] pSrc points to the block of input data.
|
---|
1082 | * @param[out] pDst points to the block of output data.
|
---|
1083 | * @param[in] blockSize number of samples to process.
|
---|
1084 | */
|
---|
1085 | void arm_fir_q15(
|
---|
1086 | const arm_fir_instance_q15 * S,
|
---|
1087 | q15_t * pSrc,
|
---|
1088 | q15_t * pDst,
|
---|
1089 | uint32_t blockSize);
|
---|
1090 |
|
---|
1091 |
|
---|
1092 | /**
|
---|
1093 | * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
|
---|
1094 | * @param[in] S points to an instance of the Q15 FIR filter structure.
|
---|
1095 | * @param[in] pSrc points to the block of input data.
|
---|
1096 | * @param[out] pDst points to the block of output data.
|
---|
1097 | * @param[in] blockSize number of samples to process.
|
---|
1098 | */
|
---|
1099 | void arm_fir_fast_q15(
|
---|
1100 | const arm_fir_instance_q15 * S,
|
---|
1101 | q15_t * pSrc,
|
---|
1102 | q15_t * pDst,
|
---|
1103 | uint32_t blockSize);
|
---|
1104 |
|
---|
1105 |
|
---|
1106 | /**
|
---|
1107 | * @brief Initialization function for the Q15 FIR filter.
|
---|
1108 | * @param[in,out] S points to an instance of the Q15 FIR filter structure.
|
---|
1109 | * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
|
---|
1110 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
1111 | * @param[in] pState points to the state buffer.
|
---|
1112 | * @param[in] blockSize number of samples that are processed at a time.
|
---|
1113 | * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
|
---|
1114 | * <code>numTaps</code> is not a supported value.
|
---|
1115 | */
|
---|
1116 | arm_status arm_fir_init_q15(
|
---|
1117 | arm_fir_instance_q15 * S,
|
---|
1118 | uint16_t numTaps,
|
---|
1119 | q15_t * pCoeffs,
|
---|
1120 | q15_t * pState,
|
---|
1121 | uint32_t blockSize);
|
---|
1122 |
|
---|
1123 |
|
---|
1124 | /**
|
---|
1125 | * @brief Processing function for the Q31 FIR filter.
|
---|
1126 | * @param[in] S points to an instance of the Q31 FIR filter structure.
|
---|
1127 | * @param[in] pSrc points to the block of input data.
|
---|
1128 | * @param[out] pDst points to the block of output data.
|
---|
1129 | * @param[in] blockSize number of samples to process.
|
---|
1130 | */
|
---|
1131 | void arm_fir_q31(
|
---|
1132 | const arm_fir_instance_q31 * S,
|
---|
1133 | q31_t * pSrc,
|
---|
1134 | q31_t * pDst,
|
---|
1135 | uint32_t blockSize);
|
---|
1136 |
|
---|
1137 |
|
---|
1138 | /**
|
---|
1139 | * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
|
---|
1140 | * @param[in] S points to an instance of the Q31 FIR structure.
|
---|
1141 | * @param[in] pSrc points to the block of input data.
|
---|
1142 | * @param[out] pDst points to the block of output data.
|
---|
1143 | * @param[in] blockSize number of samples to process.
|
---|
1144 | */
|
---|
1145 | void arm_fir_fast_q31(
|
---|
1146 | const arm_fir_instance_q31 * S,
|
---|
1147 | q31_t * pSrc,
|
---|
1148 | q31_t * pDst,
|
---|
1149 | uint32_t blockSize);
|
---|
1150 |
|
---|
1151 |
|
---|
1152 | /**
|
---|
1153 | * @brief Initialization function for the Q31 FIR filter.
|
---|
1154 | * @param[in,out] S points to an instance of the Q31 FIR structure.
|
---|
1155 | * @param[in] numTaps Number of filter coefficients in the filter.
|
---|
1156 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
1157 | * @param[in] pState points to the state buffer.
|
---|
1158 | * @param[in] blockSize number of samples that are processed at a time.
|
---|
1159 | */
|
---|
1160 | void arm_fir_init_q31(
|
---|
1161 | arm_fir_instance_q31 * S,
|
---|
1162 | uint16_t numTaps,
|
---|
1163 | q31_t * pCoeffs,
|
---|
1164 | q31_t * pState,
|
---|
1165 | uint32_t blockSize);
|
---|
1166 |
|
---|
1167 |
|
---|
1168 | /**
|
---|
1169 | * @brief Processing function for the floating-point FIR filter.
|
---|
1170 | * @param[in] S points to an instance of the floating-point FIR structure.
|
---|
1171 | * @param[in] pSrc points to the block of input data.
|
---|
1172 | * @param[out] pDst points to the block of output data.
|
---|
1173 | * @param[in] blockSize number of samples to process.
|
---|
1174 | */
|
---|
1175 | void arm_fir_f32(
|
---|
1176 | const arm_fir_instance_f32 * S,
|
---|
1177 | float32_t * pSrc,
|
---|
1178 | float32_t * pDst,
|
---|
1179 | uint32_t blockSize);
|
---|
1180 |
|
---|
1181 |
|
---|
1182 | /**
|
---|
1183 | * @brief Initialization function for the floating-point FIR filter.
|
---|
1184 | * @param[in,out] S points to an instance of the floating-point FIR filter structure.
|
---|
1185 | * @param[in] numTaps Number of filter coefficients in the filter.
|
---|
1186 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
1187 | * @param[in] pState points to the state buffer.
|
---|
1188 | * @param[in] blockSize number of samples that are processed at a time.
|
---|
1189 | */
|
---|
1190 | void arm_fir_init_f32(
|
---|
1191 | arm_fir_instance_f32 * S,
|
---|
1192 | uint16_t numTaps,
|
---|
1193 | float32_t * pCoeffs,
|
---|
1194 | float32_t * pState,
|
---|
1195 | uint32_t blockSize);
|
---|
1196 |
|
---|
1197 |
|
---|
1198 | /**
|
---|
1199 | * @brief Instance structure for the Q15 Biquad cascade filter.
|
---|
1200 | */
|
---|
1201 | typedef struct
|
---|
1202 | {
|
---|
1203 | int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
---|
1204 | q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
---|
1205 | q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
---|
1206 | int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
|
---|
1207 | } arm_biquad_casd_df1_inst_q15;
|
---|
1208 |
|
---|
1209 | /**
|
---|
1210 | * @brief Instance structure for the Q31 Biquad cascade filter.
|
---|
1211 | */
|
---|
1212 | typedef struct
|
---|
1213 | {
|
---|
1214 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
---|
1215 | q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
---|
1216 | q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
---|
1217 | uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
|
---|
1218 | } arm_biquad_casd_df1_inst_q31;
|
---|
1219 |
|
---|
1220 | /**
|
---|
1221 | * @brief Instance structure for the floating-point Biquad cascade filter.
|
---|
1222 | */
|
---|
1223 | typedef struct
|
---|
1224 | {
|
---|
1225 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
---|
1226 | float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
---|
1227 | float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
---|
1228 | } arm_biquad_casd_df1_inst_f32;
|
---|
1229 |
|
---|
1230 |
|
---|
1231 | /**
|
---|
1232 | * @brief Processing function for the Q15 Biquad cascade filter.
|
---|
1233 | * @param[in] S points to an instance of the Q15 Biquad cascade structure.
|
---|
1234 | * @param[in] pSrc points to the block of input data.
|
---|
1235 | * @param[out] pDst points to the block of output data.
|
---|
1236 | * @param[in] blockSize number of samples to process.
|
---|
1237 | */
|
---|
1238 | void arm_biquad_cascade_df1_q15(
|
---|
1239 | const arm_biquad_casd_df1_inst_q15 * S,
|
---|
1240 | q15_t * pSrc,
|
---|
1241 | q15_t * pDst,
|
---|
1242 | uint32_t blockSize);
|
---|
1243 |
|
---|
1244 |
|
---|
1245 | /**
|
---|
1246 | * @brief Initialization function for the Q15 Biquad cascade filter.
|
---|
1247 | * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
|
---|
1248 | * @param[in] numStages number of 2nd order stages in the filter.
|
---|
1249 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
1250 | * @param[in] pState points to the state buffer.
|
---|
1251 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
|
---|
1252 | */
|
---|
1253 | void arm_biquad_cascade_df1_init_q15(
|
---|
1254 | arm_biquad_casd_df1_inst_q15 * S,
|
---|
1255 | uint8_t numStages,
|
---|
1256 | q15_t * pCoeffs,
|
---|
1257 | q15_t * pState,
|
---|
1258 | int8_t postShift);
|
---|
1259 |
|
---|
1260 |
|
---|
1261 | /**
|
---|
1262 | * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
|
---|
1263 | * @param[in] S points to an instance of the Q15 Biquad cascade structure.
|
---|
1264 | * @param[in] pSrc points to the block of input data.
|
---|
1265 | * @param[out] pDst points to the block of output data.
|
---|
1266 | * @param[in] blockSize number of samples to process.
|
---|
1267 | */
|
---|
1268 | void arm_biquad_cascade_df1_fast_q15(
|
---|
1269 | const arm_biquad_casd_df1_inst_q15 * S,
|
---|
1270 | q15_t * pSrc,
|
---|
1271 | q15_t * pDst,
|
---|
1272 | uint32_t blockSize);
|
---|
1273 |
|
---|
1274 |
|
---|
1275 | /**
|
---|
1276 | * @brief Processing function for the Q31 Biquad cascade filter
|
---|
1277 | * @param[in] S points to an instance of the Q31 Biquad cascade structure.
|
---|
1278 | * @param[in] pSrc points to the block of input data.
|
---|
1279 | * @param[out] pDst points to the block of output data.
|
---|
1280 | * @param[in] blockSize number of samples to process.
|
---|
1281 | */
|
---|
1282 | void arm_biquad_cascade_df1_q31(
|
---|
1283 | const arm_biquad_casd_df1_inst_q31 * S,
|
---|
1284 | q31_t * pSrc,
|
---|
1285 | q31_t * pDst,
|
---|
1286 | uint32_t blockSize);
|
---|
1287 |
|
---|
1288 |
|
---|
1289 | /**
|
---|
1290 | * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
|
---|
1291 | * @param[in] S points to an instance of the Q31 Biquad cascade structure.
|
---|
1292 | * @param[in] pSrc points to the block of input data.
|
---|
1293 | * @param[out] pDst points to the block of output data.
|
---|
1294 | * @param[in] blockSize number of samples to process.
|
---|
1295 | */
|
---|
1296 | void arm_biquad_cascade_df1_fast_q31(
|
---|
1297 | const arm_biquad_casd_df1_inst_q31 * S,
|
---|
1298 | q31_t * pSrc,
|
---|
1299 | q31_t * pDst,
|
---|
1300 | uint32_t blockSize);
|
---|
1301 |
|
---|
1302 |
|
---|
1303 | /**
|
---|
1304 | * @brief Initialization function for the Q31 Biquad cascade filter.
|
---|
1305 | * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
|
---|
1306 | * @param[in] numStages number of 2nd order stages in the filter.
|
---|
1307 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
1308 | * @param[in] pState points to the state buffer.
|
---|
1309 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
|
---|
1310 | */
|
---|
1311 | void arm_biquad_cascade_df1_init_q31(
|
---|
1312 | arm_biquad_casd_df1_inst_q31 * S,
|
---|
1313 | uint8_t numStages,
|
---|
1314 | q31_t * pCoeffs,
|
---|
1315 | q31_t * pState,
|
---|
1316 | int8_t postShift);
|
---|
1317 |
|
---|
1318 |
|
---|
1319 | /**
|
---|
1320 | * @brief Processing function for the floating-point Biquad cascade filter.
|
---|
1321 | * @param[in] S points to an instance of the floating-point Biquad cascade structure.
|
---|
1322 | * @param[in] pSrc points to the block of input data.
|
---|
1323 | * @param[out] pDst points to the block of output data.
|
---|
1324 | * @param[in] blockSize number of samples to process.
|
---|
1325 | */
|
---|
1326 | void arm_biquad_cascade_df1_f32(
|
---|
1327 | const arm_biquad_casd_df1_inst_f32 * S,
|
---|
1328 | float32_t * pSrc,
|
---|
1329 | float32_t * pDst,
|
---|
1330 | uint32_t blockSize);
|
---|
1331 |
|
---|
1332 |
|
---|
1333 | /**
|
---|
1334 | * @brief Initialization function for the floating-point Biquad cascade filter.
|
---|
1335 | * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
|
---|
1336 | * @param[in] numStages number of 2nd order stages in the filter.
|
---|
1337 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
1338 | * @param[in] pState points to the state buffer.
|
---|
1339 | */
|
---|
1340 | void arm_biquad_cascade_df1_init_f32(
|
---|
1341 | arm_biquad_casd_df1_inst_f32 * S,
|
---|
1342 | uint8_t numStages,
|
---|
1343 | float32_t * pCoeffs,
|
---|
1344 | float32_t * pState);
|
---|
1345 |
|
---|
1346 |
|
---|
1347 | /**
|
---|
1348 | * @brief Instance structure for the floating-point matrix structure.
|
---|
1349 | */
|
---|
1350 | typedef struct
|
---|
1351 | {
|
---|
1352 | uint16_t numRows; /**< number of rows of the matrix. */
|
---|
1353 | uint16_t numCols; /**< number of columns of the matrix. */
|
---|
1354 | float32_t *pData; /**< points to the data of the matrix. */
|
---|
1355 | } arm_matrix_instance_f32;
|
---|
1356 |
|
---|
1357 |
|
---|
1358 | /**
|
---|
1359 | * @brief Instance structure for the floating-point matrix structure.
|
---|
1360 | */
|
---|
1361 | typedef struct
|
---|
1362 | {
|
---|
1363 | uint16_t numRows; /**< number of rows of the matrix. */
|
---|
1364 | uint16_t numCols; /**< number of columns of the matrix. */
|
---|
1365 | float64_t *pData; /**< points to the data of the matrix. */
|
---|
1366 | } arm_matrix_instance_f64;
|
---|
1367 |
|
---|
1368 | /**
|
---|
1369 | * @brief Instance structure for the Q15 matrix structure.
|
---|
1370 | */
|
---|
1371 | typedef struct
|
---|
1372 | {
|
---|
1373 | uint16_t numRows; /**< number of rows of the matrix. */
|
---|
1374 | uint16_t numCols; /**< number of columns of the matrix. */
|
---|
1375 | q15_t *pData; /**< points to the data of the matrix. */
|
---|
1376 | } arm_matrix_instance_q15;
|
---|
1377 |
|
---|
1378 | /**
|
---|
1379 | * @brief Instance structure for the Q31 matrix structure.
|
---|
1380 | */
|
---|
1381 | typedef struct
|
---|
1382 | {
|
---|
1383 | uint16_t numRows; /**< number of rows of the matrix. */
|
---|
1384 | uint16_t numCols; /**< number of columns of the matrix. */
|
---|
1385 | q31_t *pData; /**< points to the data of the matrix. */
|
---|
1386 | } arm_matrix_instance_q31;
|
---|
1387 |
|
---|
1388 |
|
---|
1389 | /**
|
---|
1390 | * @brief Floating-point matrix addition.
|
---|
1391 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1392 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1393 | * @param[out] pDst points to output matrix structure
|
---|
1394 | * @return The function returns either
|
---|
1395 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1396 | */
|
---|
1397 | arm_status arm_mat_add_f32(
|
---|
1398 | const arm_matrix_instance_f32 * pSrcA,
|
---|
1399 | const arm_matrix_instance_f32 * pSrcB,
|
---|
1400 | arm_matrix_instance_f32 * pDst);
|
---|
1401 |
|
---|
1402 |
|
---|
1403 | /**
|
---|
1404 | * @brief Q15 matrix addition.
|
---|
1405 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1406 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1407 | * @param[out] pDst points to output matrix structure
|
---|
1408 | * @return The function returns either
|
---|
1409 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1410 | */
|
---|
1411 | arm_status arm_mat_add_q15(
|
---|
1412 | const arm_matrix_instance_q15 * pSrcA,
|
---|
1413 | const arm_matrix_instance_q15 * pSrcB,
|
---|
1414 | arm_matrix_instance_q15 * pDst);
|
---|
1415 |
|
---|
1416 |
|
---|
1417 | /**
|
---|
1418 | * @brief Q31 matrix addition.
|
---|
1419 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1420 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1421 | * @param[out] pDst points to output matrix structure
|
---|
1422 | * @return The function returns either
|
---|
1423 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1424 | */
|
---|
1425 | arm_status arm_mat_add_q31(
|
---|
1426 | const arm_matrix_instance_q31 * pSrcA,
|
---|
1427 | const arm_matrix_instance_q31 * pSrcB,
|
---|
1428 | arm_matrix_instance_q31 * pDst);
|
---|
1429 |
|
---|
1430 |
|
---|
1431 | /**
|
---|
1432 | * @brief Floating-point, complex, matrix multiplication.
|
---|
1433 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1434 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1435 | * @param[out] pDst points to output matrix structure
|
---|
1436 | * @return The function returns either
|
---|
1437 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1438 | */
|
---|
1439 | arm_status arm_mat_cmplx_mult_f32(
|
---|
1440 | const arm_matrix_instance_f32 * pSrcA,
|
---|
1441 | const arm_matrix_instance_f32 * pSrcB,
|
---|
1442 | arm_matrix_instance_f32 * pDst);
|
---|
1443 |
|
---|
1444 |
|
---|
1445 | /**
|
---|
1446 | * @brief Q15, complex, matrix multiplication.
|
---|
1447 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1448 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1449 | * @param[out] pDst points to output matrix structure
|
---|
1450 | * @return The function returns either
|
---|
1451 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1452 | */
|
---|
1453 | arm_status arm_mat_cmplx_mult_q15(
|
---|
1454 | const arm_matrix_instance_q15 * pSrcA,
|
---|
1455 | const arm_matrix_instance_q15 * pSrcB,
|
---|
1456 | arm_matrix_instance_q15 * pDst,
|
---|
1457 | q15_t * pScratch);
|
---|
1458 |
|
---|
1459 |
|
---|
1460 | /**
|
---|
1461 | * @brief Q31, complex, matrix multiplication.
|
---|
1462 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1463 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1464 | * @param[out] pDst points to output matrix structure
|
---|
1465 | * @return The function returns either
|
---|
1466 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1467 | */
|
---|
1468 | arm_status arm_mat_cmplx_mult_q31(
|
---|
1469 | const arm_matrix_instance_q31 * pSrcA,
|
---|
1470 | const arm_matrix_instance_q31 * pSrcB,
|
---|
1471 | arm_matrix_instance_q31 * pDst);
|
---|
1472 |
|
---|
1473 |
|
---|
1474 | /**
|
---|
1475 | * @brief Floating-point matrix transpose.
|
---|
1476 | * @param[in] pSrc points to the input matrix
|
---|
1477 | * @param[out] pDst points to the output matrix
|
---|
1478 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
---|
1479 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1480 | */
|
---|
1481 | arm_status arm_mat_trans_f32(
|
---|
1482 | const arm_matrix_instance_f32 * pSrc,
|
---|
1483 | arm_matrix_instance_f32 * pDst);
|
---|
1484 |
|
---|
1485 |
|
---|
1486 | /**
|
---|
1487 | * @brief Q15 matrix transpose.
|
---|
1488 | * @param[in] pSrc points to the input matrix
|
---|
1489 | * @param[out] pDst points to the output matrix
|
---|
1490 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
---|
1491 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1492 | */
|
---|
1493 | arm_status arm_mat_trans_q15(
|
---|
1494 | const arm_matrix_instance_q15 * pSrc,
|
---|
1495 | arm_matrix_instance_q15 * pDst);
|
---|
1496 |
|
---|
1497 |
|
---|
1498 | /**
|
---|
1499 | * @brief Q31 matrix transpose.
|
---|
1500 | * @param[in] pSrc points to the input matrix
|
---|
1501 | * @param[out] pDst points to the output matrix
|
---|
1502 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
---|
1503 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1504 | */
|
---|
1505 | arm_status arm_mat_trans_q31(
|
---|
1506 | const arm_matrix_instance_q31 * pSrc,
|
---|
1507 | arm_matrix_instance_q31 * pDst);
|
---|
1508 |
|
---|
1509 |
|
---|
1510 | /**
|
---|
1511 | * @brief Floating-point matrix multiplication
|
---|
1512 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1513 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1514 | * @param[out] pDst points to output matrix structure
|
---|
1515 | * @return The function returns either
|
---|
1516 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1517 | */
|
---|
1518 | arm_status arm_mat_mult_f32(
|
---|
1519 | const arm_matrix_instance_f32 * pSrcA,
|
---|
1520 | const arm_matrix_instance_f32 * pSrcB,
|
---|
1521 | arm_matrix_instance_f32 * pDst);
|
---|
1522 |
|
---|
1523 |
|
---|
1524 | /**
|
---|
1525 | * @brief Q15 matrix multiplication
|
---|
1526 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1527 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1528 | * @param[out] pDst points to output matrix structure
|
---|
1529 | * @param[in] pState points to the array for storing intermediate results
|
---|
1530 | * @return The function returns either
|
---|
1531 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1532 | */
|
---|
1533 | arm_status arm_mat_mult_q15(
|
---|
1534 | const arm_matrix_instance_q15 * pSrcA,
|
---|
1535 | const arm_matrix_instance_q15 * pSrcB,
|
---|
1536 | arm_matrix_instance_q15 * pDst,
|
---|
1537 | q15_t * pState);
|
---|
1538 |
|
---|
1539 |
|
---|
1540 | /**
|
---|
1541 | * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
|
---|
1542 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1543 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1544 | * @param[out] pDst points to output matrix structure
|
---|
1545 | * @param[in] pState points to the array for storing intermediate results
|
---|
1546 | * @return The function returns either
|
---|
1547 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1548 | */
|
---|
1549 | arm_status arm_mat_mult_fast_q15(
|
---|
1550 | const arm_matrix_instance_q15 * pSrcA,
|
---|
1551 | const arm_matrix_instance_q15 * pSrcB,
|
---|
1552 | arm_matrix_instance_q15 * pDst,
|
---|
1553 | q15_t * pState);
|
---|
1554 |
|
---|
1555 |
|
---|
1556 | /**
|
---|
1557 | * @brief Q31 matrix multiplication
|
---|
1558 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1559 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1560 | * @param[out] pDst points to output matrix structure
|
---|
1561 | * @return The function returns either
|
---|
1562 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1563 | */
|
---|
1564 | arm_status arm_mat_mult_q31(
|
---|
1565 | const arm_matrix_instance_q31 * pSrcA,
|
---|
1566 | const arm_matrix_instance_q31 * pSrcB,
|
---|
1567 | arm_matrix_instance_q31 * pDst);
|
---|
1568 |
|
---|
1569 |
|
---|
1570 | /**
|
---|
1571 | * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
|
---|
1572 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1573 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1574 | * @param[out] pDst points to output matrix structure
|
---|
1575 | * @return The function returns either
|
---|
1576 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1577 | */
|
---|
1578 | arm_status arm_mat_mult_fast_q31(
|
---|
1579 | const arm_matrix_instance_q31 * pSrcA,
|
---|
1580 | const arm_matrix_instance_q31 * pSrcB,
|
---|
1581 | arm_matrix_instance_q31 * pDst);
|
---|
1582 |
|
---|
1583 |
|
---|
1584 | /**
|
---|
1585 | * @brief Floating-point matrix subtraction
|
---|
1586 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1587 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1588 | * @param[out] pDst points to output matrix structure
|
---|
1589 | * @return The function returns either
|
---|
1590 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1591 | */
|
---|
1592 | arm_status arm_mat_sub_f32(
|
---|
1593 | const arm_matrix_instance_f32 * pSrcA,
|
---|
1594 | const arm_matrix_instance_f32 * pSrcB,
|
---|
1595 | arm_matrix_instance_f32 * pDst);
|
---|
1596 |
|
---|
1597 |
|
---|
1598 | /**
|
---|
1599 | * @brief Q15 matrix subtraction
|
---|
1600 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1601 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1602 | * @param[out] pDst points to output matrix structure
|
---|
1603 | * @return The function returns either
|
---|
1604 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1605 | */
|
---|
1606 | arm_status arm_mat_sub_q15(
|
---|
1607 | const arm_matrix_instance_q15 * pSrcA,
|
---|
1608 | const arm_matrix_instance_q15 * pSrcB,
|
---|
1609 | arm_matrix_instance_q15 * pDst);
|
---|
1610 |
|
---|
1611 |
|
---|
1612 | /**
|
---|
1613 | * @brief Q31 matrix subtraction
|
---|
1614 | * @param[in] pSrcA points to the first input matrix structure
|
---|
1615 | * @param[in] pSrcB points to the second input matrix structure
|
---|
1616 | * @param[out] pDst points to output matrix structure
|
---|
1617 | * @return The function returns either
|
---|
1618 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1619 | */
|
---|
1620 | arm_status arm_mat_sub_q31(
|
---|
1621 | const arm_matrix_instance_q31 * pSrcA,
|
---|
1622 | const arm_matrix_instance_q31 * pSrcB,
|
---|
1623 | arm_matrix_instance_q31 * pDst);
|
---|
1624 |
|
---|
1625 |
|
---|
1626 | /**
|
---|
1627 | * @brief Floating-point matrix scaling.
|
---|
1628 | * @param[in] pSrc points to the input matrix
|
---|
1629 | * @param[in] scale scale factor
|
---|
1630 | * @param[out] pDst points to the output matrix
|
---|
1631 | * @return The function returns either
|
---|
1632 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1633 | */
|
---|
1634 | arm_status arm_mat_scale_f32(
|
---|
1635 | const arm_matrix_instance_f32 * pSrc,
|
---|
1636 | float32_t scale,
|
---|
1637 | arm_matrix_instance_f32 * pDst);
|
---|
1638 |
|
---|
1639 |
|
---|
1640 | /**
|
---|
1641 | * @brief Q15 matrix scaling.
|
---|
1642 | * @param[in] pSrc points to input matrix
|
---|
1643 | * @param[in] scaleFract fractional portion of the scale factor
|
---|
1644 | * @param[in] shift number of bits to shift the result by
|
---|
1645 | * @param[out] pDst points to output matrix
|
---|
1646 | * @return The function returns either
|
---|
1647 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1648 | */
|
---|
1649 | arm_status arm_mat_scale_q15(
|
---|
1650 | const arm_matrix_instance_q15 * pSrc,
|
---|
1651 | q15_t scaleFract,
|
---|
1652 | int32_t shift,
|
---|
1653 | arm_matrix_instance_q15 * pDst);
|
---|
1654 |
|
---|
1655 |
|
---|
1656 | /**
|
---|
1657 | * @brief Q31 matrix scaling.
|
---|
1658 | * @param[in] pSrc points to input matrix
|
---|
1659 | * @param[in] scaleFract fractional portion of the scale factor
|
---|
1660 | * @param[in] shift number of bits to shift the result by
|
---|
1661 | * @param[out] pDst points to output matrix structure
|
---|
1662 | * @return The function returns either
|
---|
1663 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
---|
1664 | */
|
---|
1665 | arm_status arm_mat_scale_q31(
|
---|
1666 | const arm_matrix_instance_q31 * pSrc,
|
---|
1667 | q31_t scaleFract,
|
---|
1668 | int32_t shift,
|
---|
1669 | arm_matrix_instance_q31 * pDst);
|
---|
1670 |
|
---|
1671 |
|
---|
1672 | /**
|
---|
1673 | * @brief Q31 matrix initialization.
|
---|
1674 | * @param[in,out] S points to an instance of the floating-point matrix structure.
|
---|
1675 | * @param[in] nRows number of rows in the matrix.
|
---|
1676 | * @param[in] nColumns number of columns in the matrix.
|
---|
1677 | * @param[in] pData points to the matrix data array.
|
---|
1678 | */
|
---|
1679 | void arm_mat_init_q31(
|
---|
1680 | arm_matrix_instance_q31 * S,
|
---|
1681 | uint16_t nRows,
|
---|
1682 | uint16_t nColumns,
|
---|
1683 | q31_t * pData);
|
---|
1684 |
|
---|
1685 |
|
---|
1686 | /**
|
---|
1687 | * @brief Q15 matrix initialization.
|
---|
1688 | * @param[in,out] S points to an instance of the floating-point matrix structure.
|
---|
1689 | * @param[in] nRows number of rows in the matrix.
|
---|
1690 | * @param[in] nColumns number of columns in the matrix.
|
---|
1691 | * @param[in] pData points to the matrix data array.
|
---|
1692 | */
|
---|
1693 | void arm_mat_init_q15(
|
---|
1694 | arm_matrix_instance_q15 * S,
|
---|
1695 | uint16_t nRows,
|
---|
1696 | uint16_t nColumns,
|
---|
1697 | q15_t * pData);
|
---|
1698 |
|
---|
1699 |
|
---|
1700 | /**
|
---|
1701 | * @brief Floating-point matrix initialization.
|
---|
1702 | * @param[in,out] S points to an instance of the floating-point matrix structure.
|
---|
1703 | * @param[in] nRows number of rows in the matrix.
|
---|
1704 | * @param[in] nColumns number of columns in the matrix.
|
---|
1705 | * @param[in] pData points to the matrix data array.
|
---|
1706 | */
|
---|
1707 | void arm_mat_init_f32(
|
---|
1708 | arm_matrix_instance_f32 * S,
|
---|
1709 | uint16_t nRows,
|
---|
1710 | uint16_t nColumns,
|
---|
1711 | float32_t * pData);
|
---|
1712 |
|
---|
1713 |
|
---|
1714 |
|
---|
1715 | /**
|
---|
1716 | * @brief Instance structure for the Q15 PID Control.
|
---|
1717 | */
|
---|
1718 | typedef struct
|
---|
1719 | {
|
---|
1720 | q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
---|
1721 | #if !defined (ARM_MATH_DSP)
|
---|
1722 | q15_t A1;
|
---|
1723 | q15_t A2;
|
---|
1724 | #else
|
---|
1725 | q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
|
---|
1726 | #endif
|
---|
1727 | q15_t state[3]; /**< The state array of length 3. */
|
---|
1728 | q15_t Kp; /**< The proportional gain. */
|
---|
1729 | q15_t Ki; /**< The integral gain. */
|
---|
1730 | q15_t Kd; /**< The derivative gain. */
|
---|
1731 | } arm_pid_instance_q15;
|
---|
1732 |
|
---|
1733 | /**
|
---|
1734 | * @brief Instance structure for the Q31 PID Control.
|
---|
1735 | */
|
---|
1736 | typedef struct
|
---|
1737 | {
|
---|
1738 | q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
---|
1739 | q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
|
---|
1740 | q31_t A2; /**< The derived gain, A2 = Kd . */
|
---|
1741 | q31_t state[3]; /**< The state array of length 3. */
|
---|
1742 | q31_t Kp; /**< The proportional gain. */
|
---|
1743 | q31_t Ki; /**< The integral gain. */
|
---|
1744 | q31_t Kd; /**< The derivative gain. */
|
---|
1745 | } arm_pid_instance_q31;
|
---|
1746 |
|
---|
1747 | /**
|
---|
1748 | * @brief Instance structure for the floating-point PID Control.
|
---|
1749 | */
|
---|
1750 | typedef struct
|
---|
1751 | {
|
---|
1752 | float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
---|
1753 | float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
|
---|
1754 | float32_t A2; /**< The derived gain, A2 = Kd . */
|
---|
1755 | float32_t state[3]; /**< The state array of length 3. */
|
---|
1756 | float32_t Kp; /**< The proportional gain. */
|
---|
1757 | float32_t Ki; /**< The integral gain. */
|
---|
1758 | float32_t Kd; /**< The derivative gain. */
|
---|
1759 | } arm_pid_instance_f32;
|
---|
1760 |
|
---|
1761 |
|
---|
1762 |
|
---|
1763 | /**
|
---|
1764 | * @brief Initialization function for the floating-point PID Control.
|
---|
1765 | * @param[in,out] S points to an instance of the PID structure.
|
---|
1766 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
---|
1767 | */
|
---|
1768 | void arm_pid_init_f32(
|
---|
1769 | arm_pid_instance_f32 * S,
|
---|
1770 | int32_t resetStateFlag);
|
---|
1771 |
|
---|
1772 |
|
---|
1773 | /**
|
---|
1774 | * @brief Reset function for the floating-point PID Control.
|
---|
1775 | * @param[in,out] S is an instance of the floating-point PID Control structure
|
---|
1776 | */
|
---|
1777 | void arm_pid_reset_f32(
|
---|
1778 | arm_pid_instance_f32 * S);
|
---|
1779 |
|
---|
1780 |
|
---|
1781 | /**
|
---|
1782 | * @brief Initialization function for the Q31 PID Control.
|
---|
1783 | * @param[in,out] S points to an instance of the Q15 PID structure.
|
---|
1784 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
---|
1785 | */
|
---|
1786 | void arm_pid_init_q31(
|
---|
1787 | arm_pid_instance_q31 * S,
|
---|
1788 | int32_t resetStateFlag);
|
---|
1789 |
|
---|
1790 |
|
---|
1791 | /**
|
---|
1792 | * @brief Reset function for the Q31 PID Control.
|
---|
1793 | * @param[in,out] S points to an instance of the Q31 PID Control structure
|
---|
1794 | */
|
---|
1795 |
|
---|
1796 | void arm_pid_reset_q31(
|
---|
1797 | arm_pid_instance_q31 * S);
|
---|
1798 |
|
---|
1799 |
|
---|
1800 | /**
|
---|
1801 | * @brief Initialization function for the Q15 PID Control.
|
---|
1802 | * @param[in,out] S points to an instance of the Q15 PID structure.
|
---|
1803 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
---|
1804 | */
|
---|
1805 | void arm_pid_init_q15(
|
---|
1806 | arm_pid_instance_q15 * S,
|
---|
1807 | int32_t resetStateFlag);
|
---|
1808 |
|
---|
1809 |
|
---|
1810 | /**
|
---|
1811 | * @brief Reset function for the Q15 PID Control.
|
---|
1812 | * @param[in,out] S points to an instance of the q15 PID Control structure
|
---|
1813 | */
|
---|
1814 | void arm_pid_reset_q15(
|
---|
1815 | arm_pid_instance_q15 * S);
|
---|
1816 |
|
---|
1817 |
|
---|
1818 | /**
|
---|
1819 | * @brief Instance structure for the floating-point Linear Interpolate function.
|
---|
1820 | */
|
---|
1821 | typedef struct
|
---|
1822 | {
|
---|
1823 | uint32_t nValues; /**< nValues */
|
---|
1824 | float32_t x1; /**< x1 */
|
---|
1825 | float32_t xSpacing; /**< xSpacing */
|
---|
1826 | float32_t *pYData; /**< pointer to the table of Y values */
|
---|
1827 | } arm_linear_interp_instance_f32;
|
---|
1828 |
|
---|
1829 | /**
|
---|
1830 | * @brief Instance structure for the floating-point bilinear interpolation function.
|
---|
1831 | */
|
---|
1832 | typedef struct
|
---|
1833 | {
|
---|
1834 | uint16_t numRows; /**< number of rows in the data table. */
|
---|
1835 | uint16_t numCols; /**< number of columns in the data table. */
|
---|
1836 | float32_t *pData; /**< points to the data table. */
|
---|
1837 | } arm_bilinear_interp_instance_f32;
|
---|
1838 |
|
---|
1839 | /**
|
---|
1840 | * @brief Instance structure for the Q31 bilinear interpolation function.
|
---|
1841 | */
|
---|
1842 | typedef struct
|
---|
1843 | {
|
---|
1844 | uint16_t numRows; /**< number of rows in the data table. */
|
---|
1845 | uint16_t numCols; /**< number of columns in the data table. */
|
---|
1846 | q31_t *pData; /**< points to the data table. */
|
---|
1847 | } arm_bilinear_interp_instance_q31;
|
---|
1848 |
|
---|
1849 | /**
|
---|
1850 | * @brief Instance structure for the Q15 bilinear interpolation function.
|
---|
1851 | */
|
---|
1852 | typedef struct
|
---|
1853 | {
|
---|
1854 | uint16_t numRows; /**< number of rows in the data table. */
|
---|
1855 | uint16_t numCols; /**< number of columns in the data table. */
|
---|
1856 | q15_t *pData; /**< points to the data table. */
|
---|
1857 | } arm_bilinear_interp_instance_q15;
|
---|
1858 |
|
---|
1859 | /**
|
---|
1860 | * @brief Instance structure for the Q15 bilinear interpolation function.
|
---|
1861 | */
|
---|
1862 | typedef struct
|
---|
1863 | {
|
---|
1864 | uint16_t numRows; /**< number of rows in the data table. */
|
---|
1865 | uint16_t numCols; /**< number of columns in the data table. */
|
---|
1866 | q7_t *pData; /**< points to the data table. */
|
---|
1867 | } arm_bilinear_interp_instance_q7;
|
---|
1868 |
|
---|
1869 |
|
---|
1870 | /**
|
---|
1871 | * @brief Q7 vector multiplication.
|
---|
1872 | * @param[in] pSrcA points to the first input vector
|
---|
1873 | * @param[in] pSrcB points to the second input vector
|
---|
1874 | * @param[out] pDst points to the output vector
|
---|
1875 | * @param[in] blockSize number of samples in each vector
|
---|
1876 | */
|
---|
1877 | void arm_mult_q7(
|
---|
1878 | q7_t * pSrcA,
|
---|
1879 | q7_t * pSrcB,
|
---|
1880 | q7_t * pDst,
|
---|
1881 | uint32_t blockSize);
|
---|
1882 |
|
---|
1883 |
|
---|
1884 | /**
|
---|
1885 | * @brief Q15 vector multiplication.
|
---|
1886 | * @param[in] pSrcA points to the first input vector
|
---|
1887 | * @param[in] pSrcB points to the second input vector
|
---|
1888 | * @param[out] pDst points to the output vector
|
---|
1889 | * @param[in] blockSize number of samples in each vector
|
---|
1890 | */
|
---|
1891 | void arm_mult_q15(
|
---|
1892 | q15_t * pSrcA,
|
---|
1893 | q15_t * pSrcB,
|
---|
1894 | q15_t * pDst,
|
---|
1895 | uint32_t blockSize);
|
---|
1896 |
|
---|
1897 |
|
---|
1898 | /**
|
---|
1899 | * @brief Q31 vector multiplication.
|
---|
1900 | * @param[in] pSrcA points to the first input vector
|
---|
1901 | * @param[in] pSrcB points to the second input vector
|
---|
1902 | * @param[out] pDst points to the output vector
|
---|
1903 | * @param[in] blockSize number of samples in each vector
|
---|
1904 | */
|
---|
1905 | void arm_mult_q31(
|
---|
1906 | q31_t * pSrcA,
|
---|
1907 | q31_t * pSrcB,
|
---|
1908 | q31_t * pDst,
|
---|
1909 | uint32_t blockSize);
|
---|
1910 |
|
---|
1911 |
|
---|
1912 | /**
|
---|
1913 | * @brief Floating-point vector multiplication.
|
---|
1914 | * @param[in] pSrcA points to the first input vector
|
---|
1915 | * @param[in] pSrcB points to the second input vector
|
---|
1916 | * @param[out] pDst points to the output vector
|
---|
1917 | * @param[in] blockSize number of samples in each vector
|
---|
1918 | */
|
---|
1919 | void arm_mult_f32(
|
---|
1920 | float32_t * pSrcA,
|
---|
1921 | float32_t * pSrcB,
|
---|
1922 | float32_t * pDst,
|
---|
1923 | uint32_t blockSize);
|
---|
1924 |
|
---|
1925 |
|
---|
1926 | /**
|
---|
1927 | * @brief Instance structure for the Q15 CFFT/CIFFT function.
|
---|
1928 | */
|
---|
1929 | typedef struct
|
---|
1930 | {
|
---|
1931 | uint16_t fftLen; /**< length of the FFT. */
|
---|
1932 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
---|
1933 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
---|
1934 | q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
|
---|
1935 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
1936 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
1937 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
---|
1938 | } arm_cfft_radix2_instance_q15;
|
---|
1939 |
|
---|
1940 | /* Deprecated */
|
---|
1941 | arm_status arm_cfft_radix2_init_q15(
|
---|
1942 | arm_cfft_radix2_instance_q15 * S,
|
---|
1943 | uint16_t fftLen,
|
---|
1944 | uint8_t ifftFlag,
|
---|
1945 | uint8_t bitReverseFlag);
|
---|
1946 |
|
---|
1947 | /* Deprecated */
|
---|
1948 | void arm_cfft_radix2_q15(
|
---|
1949 | const arm_cfft_radix2_instance_q15 * S,
|
---|
1950 | q15_t * pSrc);
|
---|
1951 |
|
---|
1952 |
|
---|
1953 | /**
|
---|
1954 | * @brief Instance structure for the Q15 CFFT/CIFFT function.
|
---|
1955 | */
|
---|
1956 | typedef struct
|
---|
1957 | {
|
---|
1958 | uint16_t fftLen; /**< length of the FFT. */
|
---|
1959 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
---|
1960 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
---|
1961 | q15_t *pTwiddle; /**< points to the twiddle factor table. */
|
---|
1962 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
1963 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
1964 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
---|
1965 | } arm_cfft_radix4_instance_q15;
|
---|
1966 |
|
---|
1967 | /* Deprecated */
|
---|
1968 | arm_status arm_cfft_radix4_init_q15(
|
---|
1969 | arm_cfft_radix4_instance_q15 * S,
|
---|
1970 | uint16_t fftLen,
|
---|
1971 | uint8_t ifftFlag,
|
---|
1972 | uint8_t bitReverseFlag);
|
---|
1973 |
|
---|
1974 | /* Deprecated */
|
---|
1975 | void arm_cfft_radix4_q15(
|
---|
1976 | const arm_cfft_radix4_instance_q15 * S,
|
---|
1977 | q15_t * pSrc);
|
---|
1978 |
|
---|
1979 | /**
|
---|
1980 | * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
|
---|
1981 | */
|
---|
1982 | typedef struct
|
---|
1983 | {
|
---|
1984 | uint16_t fftLen; /**< length of the FFT. */
|
---|
1985 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
---|
1986 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
---|
1987 | q31_t *pTwiddle; /**< points to the Twiddle factor table. */
|
---|
1988 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
1989 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
1990 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
---|
1991 | } arm_cfft_radix2_instance_q31;
|
---|
1992 |
|
---|
1993 | /* Deprecated */
|
---|
1994 | arm_status arm_cfft_radix2_init_q31(
|
---|
1995 | arm_cfft_radix2_instance_q31 * S,
|
---|
1996 | uint16_t fftLen,
|
---|
1997 | uint8_t ifftFlag,
|
---|
1998 | uint8_t bitReverseFlag);
|
---|
1999 |
|
---|
2000 | /* Deprecated */
|
---|
2001 | void arm_cfft_radix2_q31(
|
---|
2002 | const arm_cfft_radix2_instance_q31 * S,
|
---|
2003 | q31_t * pSrc);
|
---|
2004 |
|
---|
2005 | /**
|
---|
2006 | * @brief Instance structure for the Q31 CFFT/CIFFT function.
|
---|
2007 | */
|
---|
2008 | typedef struct
|
---|
2009 | {
|
---|
2010 | uint16_t fftLen; /**< length of the FFT. */
|
---|
2011 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
---|
2012 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
---|
2013 | q31_t *pTwiddle; /**< points to the twiddle factor table. */
|
---|
2014 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
2015 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
2016 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
---|
2017 | } arm_cfft_radix4_instance_q31;
|
---|
2018 |
|
---|
2019 | /* Deprecated */
|
---|
2020 | void arm_cfft_radix4_q31(
|
---|
2021 | const arm_cfft_radix4_instance_q31 * S,
|
---|
2022 | q31_t * pSrc);
|
---|
2023 |
|
---|
2024 | /* Deprecated */
|
---|
2025 | arm_status arm_cfft_radix4_init_q31(
|
---|
2026 | arm_cfft_radix4_instance_q31 * S,
|
---|
2027 | uint16_t fftLen,
|
---|
2028 | uint8_t ifftFlag,
|
---|
2029 | uint8_t bitReverseFlag);
|
---|
2030 |
|
---|
2031 | /**
|
---|
2032 | * @brief Instance structure for the floating-point CFFT/CIFFT function.
|
---|
2033 | */
|
---|
2034 | typedef struct
|
---|
2035 | {
|
---|
2036 | uint16_t fftLen; /**< length of the FFT. */
|
---|
2037 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
---|
2038 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
---|
2039 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
---|
2040 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
2041 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
2042 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
---|
2043 | float32_t onebyfftLen; /**< value of 1/fftLen. */
|
---|
2044 | } arm_cfft_radix2_instance_f32;
|
---|
2045 |
|
---|
2046 | /* Deprecated */
|
---|
2047 | arm_status arm_cfft_radix2_init_f32(
|
---|
2048 | arm_cfft_radix2_instance_f32 * S,
|
---|
2049 | uint16_t fftLen,
|
---|
2050 | uint8_t ifftFlag,
|
---|
2051 | uint8_t bitReverseFlag);
|
---|
2052 |
|
---|
2053 | /* Deprecated */
|
---|
2054 | void arm_cfft_radix2_f32(
|
---|
2055 | const arm_cfft_radix2_instance_f32 * S,
|
---|
2056 | float32_t * pSrc);
|
---|
2057 |
|
---|
2058 | /**
|
---|
2059 | * @brief Instance structure for the floating-point CFFT/CIFFT function.
|
---|
2060 | */
|
---|
2061 | typedef struct
|
---|
2062 | {
|
---|
2063 | uint16_t fftLen; /**< length of the FFT. */
|
---|
2064 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
---|
2065 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
---|
2066 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
---|
2067 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
2068 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
2069 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
---|
2070 | float32_t onebyfftLen; /**< value of 1/fftLen. */
|
---|
2071 | } arm_cfft_radix4_instance_f32;
|
---|
2072 |
|
---|
2073 | /* Deprecated */
|
---|
2074 | arm_status arm_cfft_radix4_init_f32(
|
---|
2075 | arm_cfft_radix4_instance_f32 * S,
|
---|
2076 | uint16_t fftLen,
|
---|
2077 | uint8_t ifftFlag,
|
---|
2078 | uint8_t bitReverseFlag);
|
---|
2079 |
|
---|
2080 | /* Deprecated */
|
---|
2081 | void arm_cfft_radix4_f32(
|
---|
2082 | const arm_cfft_radix4_instance_f32 * S,
|
---|
2083 | float32_t * pSrc);
|
---|
2084 |
|
---|
2085 | /**
|
---|
2086 | * @brief Instance structure for the fixed-point CFFT/CIFFT function.
|
---|
2087 | */
|
---|
2088 | typedef struct
|
---|
2089 | {
|
---|
2090 | uint16_t fftLen; /**< length of the FFT. */
|
---|
2091 | const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
|
---|
2092 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
2093 | uint16_t bitRevLength; /**< bit reversal table length. */
|
---|
2094 | } arm_cfft_instance_q15;
|
---|
2095 |
|
---|
2096 | void arm_cfft_q15(
|
---|
2097 | const arm_cfft_instance_q15 * S,
|
---|
2098 | q15_t * p1,
|
---|
2099 | uint8_t ifftFlag,
|
---|
2100 | uint8_t bitReverseFlag);
|
---|
2101 |
|
---|
2102 | /**
|
---|
2103 | * @brief Instance structure for the fixed-point CFFT/CIFFT function.
|
---|
2104 | */
|
---|
2105 | typedef struct
|
---|
2106 | {
|
---|
2107 | uint16_t fftLen; /**< length of the FFT. */
|
---|
2108 | const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
|
---|
2109 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
2110 | uint16_t bitRevLength; /**< bit reversal table length. */
|
---|
2111 | } arm_cfft_instance_q31;
|
---|
2112 |
|
---|
2113 | void arm_cfft_q31(
|
---|
2114 | const arm_cfft_instance_q31 * S,
|
---|
2115 | q31_t * p1,
|
---|
2116 | uint8_t ifftFlag,
|
---|
2117 | uint8_t bitReverseFlag);
|
---|
2118 |
|
---|
2119 | /**
|
---|
2120 | * @brief Instance structure for the floating-point CFFT/CIFFT function.
|
---|
2121 | */
|
---|
2122 | typedef struct
|
---|
2123 | {
|
---|
2124 | uint16_t fftLen; /**< length of the FFT. */
|
---|
2125 | const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
---|
2126 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
---|
2127 | uint16_t bitRevLength; /**< bit reversal table length. */
|
---|
2128 | } arm_cfft_instance_f32;
|
---|
2129 |
|
---|
2130 | void arm_cfft_f32(
|
---|
2131 | const arm_cfft_instance_f32 * S,
|
---|
2132 | float32_t * p1,
|
---|
2133 | uint8_t ifftFlag,
|
---|
2134 | uint8_t bitReverseFlag);
|
---|
2135 |
|
---|
2136 | /**
|
---|
2137 | * @brief Instance structure for the Q15 RFFT/RIFFT function.
|
---|
2138 | */
|
---|
2139 | typedef struct
|
---|
2140 | {
|
---|
2141 | uint32_t fftLenReal; /**< length of the real FFT. */
|
---|
2142 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
---|
2143 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
---|
2144 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
2145 | q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
---|
2146 | q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
---|
2147 | const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
|
---|
2148 | } arm_rfft_instance_q15;
|
---|
2149 |
|
---|
2150 | arm_status arm_rfft_init_q15(
|
---|
2151 | arm_rfft_instance_q15 * S,
|
---|
2152 | uint32_t fftLenReal,
|
---|
2153 | uint32_t ifftFlagR,
|
---|
2154 | uint32_t bitReverseFlag);
|
---|
2155 |
|
---|
2156 | void arm_rfft_q15(
|
---|
2157 | const arm_rfft_instance_q15 * S,
|
---|
2158 | q15_t * pSrc,
|
---|
2159 | q15_t * pDst);
|
---|
2160 |
|
---|
2161 | /**
|
---|
2162 | * @brief Instance structure for the Q31 RFFT/RIFFT function.
|
---|
2163 | */
|
---|
2164 | typedef struct
|
---|
2165 | {
|
---|
2166 | uint32_t fftLenReal; /**< length of the real FFT. */
|
---|
2167 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
---|
2168 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
---|
2169 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
2170 | q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
---|
2171 | q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
---|
2172 | const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
|
---|
2173 | } arm_rfft_instance_q31;
|
---|
2174 |
|
---|
2175 | arm_status arm_rfft_init_q31(
|
---|
2176 | arm_rfft_instance_q31 * S,
|
---|
2177 | uint32_t fftLenReal,
|
---|
2178 | uint32_t ifftFlagR,
|
---|
2179 | uint32_t bitReverseFlag);
|
---|
2180 |
|
---|
2181 | void arm_rfft_q31(
|
---|
2182 | const arm_rfft_instance_q31 * S,
|
---|
2183 | q31_t * pSrc,
|
---|
2184 | q31_t * pDst);
|
---|
2185 |
|
---|
2186 | /**
|
---|
2187 | * @brief Instance structure for the floating-point RFFT/RIFFT function.
|
---|
2188 | */
|
---|
2189 | typedef struct
|
---|
2190 | {
|
---|
2191 | uint32_t fftLenReal; /**< length of the real FFT. */
|
---|
2192 | uint16_t fftLenBy2; /**< length of the complex FFT. */
|
---|
2193 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
---|
2194 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
---|
2195 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
---|
2196 | float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
---|
2197 | float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
---|
2198 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
|
---|
2199 | } arm_rfft_instance_f32;
|
---|
2200 |
|
---|
2201 | arm_status arm_rfft_init_f32(
|
---|
2202 | arm_rfft_instance_f32 * S,
|
---|
2203 | arm_cfft_radix4_instance_f32 * S_CFFT,
|
---|
2204 | uint32_t fftLenReal,
|
---|
2205 | uint32_t ifftFlagR,
|
---|
2206 | uint32_t bitReverseFlag);
|
---|
2207 |
|
---|
2208 | void arm_rfft_f32(
|
---|
2209 | const arm_rfft_instance_f32 * S,
|
---|
2210 | float32_t * pSrc,
|
---|
2211 | float32_t * pDst);
|
---|
2212 |
|
---|
2213 | /**
|
---|
2214 | * @brief Instance structure for the floating-point RFFT/RIFFT function.
|
---|
2215 | */
|
---|
2216 | typedef struct
|
---|
2217 | {
|
---|
2218 | arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
|
---|
2219 | uint16_t fftLenRFFT; /**< length of the real sequence */
|
---|
2220 | float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
|
---|
2221 | } arm_rfft_fast_instance_f32 ;
|
---|
2222 |
|
---|
2223 | arm_status arm_rfft_fast_init_f32 (
|
---|
2224 | arm_rfft_fast_instance_f32 * S,
|
---|
2225 | uint16_t fftLen);
|
---|
2226 |
|
---|
2227 | void arm_rfft_fast_f32(
|
---|
2228 | arm_rfft_fast_instance_f32 * S,
|
---|
2229 | float32_t * p, float32_t * pOut,
|
---|
2230 | uint8_t ifftFlag);
|
---|
2231 |
|
---|
2232 | /**
|
---|
2233 | * @brief Instance structure for the floating-point DCT4/IDCT4 function.
|
---|
2234 | */
|
---|
2235 | typedef struct
|
---|
2236 | {
|
---|
2237 | uint16_t N; /**< length of the DCT4. */
|
---|
2238 | uint16_t Nby2; /**< half of the length of the DCT4. */
|
---|
2239 | float32_t normalize; /**< normalizing factor. */
|
---|
2240 | float32_t *pTwiddle; /**< points to the twiddle factor table. */
|
---|
2241 | float32_t *pCosFactor; /**< points to the cosFactor table. */
|
---|
2242 | arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
|
---|
2243 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
|
---|
2244 | } arm_dct4_instance_f32;
|
---|
2245 |
|
---|
2246 |
|
---|
2247 | /**
|
---|
2248 | * @brief Initialization function for the floating-point DCT4/IDCT4.
|
---|
2249 | * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
|
---|
2250 | * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
|
---|
2251 | * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
|
---|
2252 | * @param[in] N length of the DCT4.
|
---|
2253 | * @param[in] Nby2 half of the length of the DCT4.
|
---|
2254 | * @param[in] normalize normalizing factor.
|
---|
2255 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
|
---|
2256 | */
|
---|
2257 | arm_status arm_dct4_init_f32(
|
---|
2258 | arm_dct4_instance_f32 * S,
|
---|
2259 | arm_rfft_instance_f32 * S_RFFT,
|
---|
2260 | arm_cfft_radix4_instance_f32 * S_CFFT,
|
---|
2261 | uint16_t N,
|
---|
2262 | uint16_t Nby2,
|
---|
2263 | float32_t normalize);
|
---|
2264 |
|
---|
2265 |
|
---|
2266 | /**
|
---|
2267 | * @brief Processing function for the floating-point DCT4/IDCT4.
|
---|
2268 | * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
|
---|
2269 | * @param[in] pState points to state buffer.
|
---|
2270 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
---|
2271 | */
|
---|
2272 | void arm_dct4_f32(
|
---|
2273 | const arm_dct4_instance_f32 * S,
|
---|
2274 | float32_t * pState,
|
---|
2275 | float32_t * pInlineBuffer);
|
---|
2276 |
|
---|
2277 |
|
---|
2278 | /**
|
---|
2279 | * @brief Instance structure for the Q31 DCT4/IDCT4 function.
|
---|
2280 | */
|
---|
2281 | typedef struct
|
---|
2282 | {
|
---|
2283 | uint16_t N; /**< length of the DCT4. */
|
---|
2284 | uint16_t Nby2; /**< half of the length of the DCT4. */
|
---|
2285 | q31_t normalize; /**< normalizing factor. */
|
---|
2286 | q31_t *pTwiddle; /**< points to the twiddle factor table. */
|
---|
2287 | q31_t *pCosFactor; /**< points to the cosFactor table. */
|
---|
2288 | arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
|
---|
2289 | arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
|
---|
2290 | } arm_dct4_instance_q31;
|
---|
2291 |
|
---|
2292 |
|
---|
2293 | /**
|
---|
2294 | * @brief Initialization function for the Q31 DCT4/IDCT4.
|
---|
2295 | * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
|
---|
2296 | * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
|
---|
2297 | * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
|
---|
2298 | * @param[in] N length of the DCT4.
|
---|
2299 | * @param[in] Nby2 half of the length of the DCT4.
|
---|
2300 | * @param[in] normalize normalizing factor.
|
---|
2301 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
|
---|
2302 | */
|
---|
2303 | arm_status arm_dct4_init_q31(
|
---|
2304 | arm_dct4_instance_q31 * S,
|
---|
2305 | arm_rfft_instance_q31 * S_RFFT,
|
---|
2306 | arm_cfft_radix4_instance_q31 * S_CFFT,
|
---|
2307 | uint16_t N,
|
---|
2308 | uint16_t Nby2,
|
---|
2309 | q31_t normalize);
|
---|
2310 |
|
---|
2311 |
|
---|
2312 | /**
|
---|
2313 | * @brief Processing function for the Q31 DCT4/IDCT4.
|
---|
2314 | * @param[in] S points to an instance of the Q31 DCT4 structure.
|
---|
2315 | * @param[in] pState points to state buffer.
|
---|
2316 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
---|
2317 | */
|
---|
2318 | void arm_dct4_q31(
|
---|
2319 | const arm_dct4_instance_q31 * S,
|
---|
2320 | q31_t * pState,
|
---|
2321 | q31_t * pInlineBuffer);
|
---|
2322 |
|
---|
2323 |
|
---|
2324 | /**
|
---|
2325 | * @brief Instance structure for the Q15 DCT4/IDCT4 function.
|
---|
2326 | */
|
---|
2327 | typedef struct
|
---|
2328 | {
|
---|
2329 | uint16_t N; /**< length of the DCT4. */
|
---|
2330 | uint16_t Nby2; /**< half of the length of the DCT4. */
|
---|
2331 | q15_t normalize; /**< normalizing factor. */
|
---|
2332 | q15_t *pTwiddle; /**< points to the twiddle factor table. */
|
---|
2333 | q15_t *pCosFactor; /**< points to the cosFactor table. */
|
---|
2334 | arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
|
---|
2335 | arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
|
---|
2336 | } arm_dct4_instance_q15;
|
---|
2337 |
|
---|
2338 |
|
---|
2339 | /**
|
---|
2340 | * @brief Initialization function for the Q15 DCT4/IDCT4.
|
---|
2341 | * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
|
---|
2342 | * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
|
---|
2343 | * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
|
---|
2344 | * @param[in] N length of the DCT4.
|
---|
2345 | * @param[in] Nby2 half of the length of the DCT4.
|
---|
2346 | * @param[in] normalize normalizing factor.
|
---|
2347 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
|
---|
2348 | */
|
---|
2349 | arm_status arm_dct4_init_q15(
|
---|
2350 | arm_dct4_instance_q15 * S,
|
---|
2351 | arm_rfft_instance_q15 * S_RFFT,
|
---|
2352 | arm_cfft_radix4_instance_q15 * S_CFFT,
|
---|
2353 | uint16_t N,
|
---|
2354 | uint16_t Nby2,
|
---|
2355 | q15_t normalize);
|
---|
2356 |
|
---|
2357 |
|
---|
2358 | /**
|
---|
2359 | * @brief Processing function for the Q15 DCT4/IDCT4.
|
---|
2360 | * @param[in] S points to an instance of the Q15 DCT4 structure.
|
---|
2361 | * @param[in] pState points to state buffer.
|
---|
2362 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
---|
2363 | */
|
---|
2364 | void arm_dct4_q15(
|
---|
2365 | const arm_dct4_instance_q15 * S,
|
---|
2366 | q15_t * pState,
|
---|
2367 | q15_t * pInlineBuffer);
|
---|
2368 |
|
---|
2369 |
|
---|
2370 | /**
|
---|
2371 | * @brief Floating-point vector addition.
|
---|
2372 | * @param[in] pSrcA points to the first input vector
|
---|
2373 | * @param[in] pSrcB points to the second input vector
|
---|
2374 | * @param[out] pDst points to the output vector
|
---|
2375 | * @param[in] blockSize number of samples in each vector
|
---|
2376 | */
|
---|
2377 | void arm_add_f32(
|
---|
2378 | float32_t * pSrcA,
|
---|
2379 | float32_t * pSrcB,
|
---|
2380 | float32_t * pDst,
|
---|
2381 | uint32_t blockSize);
|
---|
2382 |
|
---|
2383 |
|
---|
2384 | /**
|
---|
2385 | * @brief Q7 vector addition.
|
---|
2386 | * @param[in] pSrcA points to the first input vector
|
---|
2387 | * @param[in] pSrcB points to the second input vector
|
---|
2388 | * @param[out] pDst points to the output vector
|
---|
2389 | * @param[in] blockSize number of samples in each vector
|
---|
2390 | */
|
---|
2391 | void arm_add_q7(
|
---|
2392 | q7_t * pSrcA,
|
---|
2393 | q7_t * pSrcB,
|
---|
2394 | q7_t * pDst,
|
---|
2395 | uint32_t blockSize);
|
---|
2396 |
|
---|
2397 |
|
---|
2398 | /**
|
---|
2399 | * @brief Q15 vector addition.
|
---|
2400 | * @param[in] pSrcA points to the first input vector
|
---|
2401 | * @param[in] pSrcB points to the second input vector
|
---|
2402 | * @param[out] pDst points to the output vector
|
---|
2403 | * @param[in] blockSize number of samples in each vector
|
---|
2404 | */
|
---|
2405 | void arm_add_q15(
|
---|
2406 | q15_t * pSrcA,
|
---|
2407 | q15_t * pSrcB,
|
---|
2408 | q15_t * pDst,
|
---|
2409 | uint32_t blockSize);
|
---|
2410 |
|
---|
2411 |
|
---|
2412 | /**
|
---|
2413 | * @brief Q31 vector addition.
|
---|
2414 | * @param[in] pSrcA points to the first input vector
|
---|
2415 | * @param[in] pSrcB points to the second input vector
|
---|
2416 | * @param[out] pDst points to the output vector
|
---|
2417 | * @param[in] blockSize number of samples in each vector
|
---|
2418 | */
|
---|
2419 | void arm_add_q31(
|
---|
2420 | q31_t * pSrcA,
|
---|
2421 | q31_t * pSrcB,
|
---|
2422 | q31_t * pDst,
|
---|
2423 | uint32_t blockSize);
|
---|
2424 |
|
---|
2425 |
|
---|
2426 | /**
|
---|
2427 | * @brief Floating-point vector subtraction.
|
---|
2428 | * @param[in] pSrcA points to the first input vector
|
---|
2429 | * @param[in] pSrcB points to the second input vector
|
---|
2430 | * @param[out] pDst points to the output vector
|
---|
2431 | * @param[in] blockSize number of samples in each vector
|
---|
2432 | */
|
---|
2433 | void arm_sub_f32(
|
---|
2434 | float32_t * pSrcA,
|
---|
2435 | float32_t * pSrcB,
|
---|
2436 | float32_t * pDst,
|
---|
2437 | uint32_t blockSize);
|
---|
2438 |
|
---|
2439 |
|
---|
2440 | /**
|
---|
2441 | * @brief Q7 vector subtraction.
|
---|
2442 | * @param[in] pSrcA points to the first input vector
|
---|
2443 | * @param[in] pSrcB points to the second input vector
|
---|
2444 | * @param[out] pDst points to the output vector
|
---|
2445 | * @param[in] blockSize number of samples in each vector
|
---|
2446 | */
|
---|
2447 | void arm_sub_q7(
|
---|
2448 | q7_t * pSrcA,
|
---|
2449 | q7_t * pSrcB,
|
---|
2450 | q7_t * pDst,
|
---|
2451 | uint32_t blockSize);
|
---|
2452 |
|
---|
2453 |
|
---|
2454 | /**
|
---|
2455 | * @brief Q15 vector subtraction.
|
---|
2456 | * @param[in] pSrcA points to the first input vector
|
---|
2457 | * @param[in] pSrcB points to the second input vector
|
---|
2458 | * @param[out] pDst points to the output vector
|
---|
2459 | * @param[in] blockSize number of samples in each vector
|
---|
2460 | */
|
---|
2461 | void arm_sub_q15(
|
---|
2462 | q15_t * pSrcA,
|
---|
2463 | q15_t * pSrcB,
|
---|
2464 | q15_t * pDst,
|
---|
2465 | uint32_t blockSize);
|
---|
2466 |
|
---|
2467 |
|
---|
2468 | /**
|
---|
2469 | * @brief Q31 vector subtraction.
|
---|
2470 | * @param[in] pSrcA points to the first input vector
|
---|
2471 | * @param[in] pSrcB points to the second input vector
|
---|
2472 | * @param[out] pDst points to the output vector
|
---|
2473 | * @param[in] blockSize number of samples in each vector
|
---|
2474 | */
|
---|
2475 | void arm_sub_q31(
|
---|
2476 | q31_t * pSrcA,
|
---|
2477 | q31_t * pSrcB,
|
---|
2478 | q31_t * pDst,
|
---|
2479 | uint32_t blockSize);
|
---|
2480 |
|
---|
2481 |
|
---|
2482 | /**
|
---|
2483 | * @brief Multiplies a floating-point vector by a scalar.
|
---|
2484 | * @param[in] pSrc points to the input vector
|
---|
2485 | * @param[in] scale scale factor to be applied
|
---|
2486 | * @param[out] pDst points to the output vector
|
---|
2487 | * @param[in] blockSize number of samples in the vector
|
---|
2488 | */
|
---|
2489 | void arm_scale_f32(
|
---|
2490 | float32_t * pSrc,
|
---|
2491 | float32_t scale,
|
---|
2492 | float32_t * pDst,
|
---|
2493 | uint32_t blockSize);
|
---|
2494 |
|
---|
2495 |
|
---|
2496 | /**
|
---|
2497 | * @brief Multiplies a Q7 vector by a scalar.
|
---|
2498 | * @param[in] pSrc points to the input vector
|
---|
2499 | * @param[in] scaleFract fractional portion of the scale value
|
---|
2500 | * @param[in] shift number of bits to shift the result by
|
---|
2501 | * @param[out] pDst points to the output vector
|
---|
2502 | * @param[in] blockSize number of samples in the vector
|
---|
2503 | */
|
---|
2504 | void arm_scale_q7(
|
---|
2505 | q7_t * pSrc,
|
---|
2506 | q7_t scaleFract,
|
---|
2507 | int8_t shift,
|
---|
2508 | q7_t * pDst,
|
---|
2509 | uint32_t blockSize);
|
---|
2510 |
|
---|
2511 |
|
---|
2512 | /**
|
---|
2513 | * @brief Multiplies a Q15 vector by a scalar.
|
---|
2514 | * @param[in] pSrc points to the input vector
|
---|
2515 | * @param[in] scaleFract fractional portion of the scale value
|
---|
2516 | * @param[in] shift number of bits to shift the result by
|
---|
2517 | * @param[out] pDst points to the output vector
|
---|
2518 | * @param[in] blockSize number of samples in the vector
|
---|
2519 | */
|
---|
2520 | void arm_scale_q15(
|
---|
2521 | q15_t * pSrc,
|
---|
2522 | q15_t scaleFract,
|
---|
2523 | int8_t shift,
|
---|
2524 | q15_t * pDst,
|
---|
2525 | uint32_t blockSize);
|
---|
2526 |
|
---|
2527 |
|
---|
2528 | /**
|
---|
2529 | * @brief Multiplies a Q31 vector by a scalar.
|
---|
2530 | * @param[in] pSrc points to the input vector
|
---|
2531 | * @param[in] scaleFract fractional portion of the scale value
|
---|
2532 | * @param[in] shift number of bits to shift the result by
|
---|
2533 | * @param[out] pDst points to the output vector
|
---|
2534 | * @param[in] blockSize number of samples in the vector
|
---|
2535 | */
|
---|
2536 | void arm_scale_q31(
|
---|
2537 | q31_t * pSrc,
|
---|
2538 | q31_t scaleFract,
|
---|
2539 | int8_t shift,
|
---|
2540 | q31_t * pDst,
|
---|
2541 | uint32_t blockSize);
|
---|
2542 |
|
---|
2543 |
|
---|
2544 | /**
|
---|
2545 | * @brief Q7 vector absolute value.
|
---|
2546 | * @param[in] pSrc points to the input buffer
|
---|
2547 | * @param[out] pDst points to the output buffer
|
---|
2548 | * @param[in] blockSize number of samples in each vector
|
---|
2549 | */
|
---|
2550 | void arm_abs_q7(
|
---|
2551 | q7_t * pSrc,
|
---|
2552 | q7_t * pDst,
|
---|
2553 | uint32_t blockSize);
|
---|
2554 |
|
---|
2555 |
|
---|
2556 | /**
|
---|
2557 | * @brief Floating-point vector absolute value.
|
---|
2558 | * @param[in] pSrc points to the input buffer
|
---|
2559 | * @param[out] pDst points to the output buffer
|
---|
2560 | * @param[in] blockSize number of samples in each vector
|
---|
2561 | */
|
---|
2562 | void arm_abs_f32(
|
---|
2563 | float32_t * pSrc,
|
---|
2564 | float32_t * pDst,
|
---|
2565 | uint32_t blockSize);
|
---|
2566 |
|
---|
2567 |
|
---|
2568 | /**
|
---|
2569 | * @brief Q15 vector absolute value.
|
---|
2570 | * @param[in] pSrc points to the input buffer
|
---|
2571 | * @param[out] pDst points to the output buffer
|
---|
2572 | * @param[in] blockSize number of samples in each vector
|
---|
2573 | */
|
---|
2574 | void arm_abs_q15(
|
---|
2575 | q15_t * pSrc,
|
---|
2576 | q15_t * pDst,
|
---|
2577 | uint32_t blockSize);
|
---|
2578 |
|
---|
2579 |
|
---|
2580 | /**
|
---|
2581 | * @brief Q31 vector absolute value.
|
---|
2582 | * @param[in] pSrc points to the input buffer
|
---|
2583 | * @param[out] pDst points to the output buffer
|
---|
2584 | * @param[in] blockSize number of samples in each vector
|
---|
2585 | */
|
---|
2586 | void arm_abs_q31(
|
---|
2587 | q31_t * pSrc,
|
---|
2588 | q31_t * pDst,
|
---|
2589 | uint32_t blockSize);
|
---|
2590 |
|
---|
2591 |
|
---|
2592 | /**
|
---|
2593 | * @brief Dot product of floating-point vectors.
|
---|
2594 | * @param[in] pSrcA points to the first input vector
|
---|
2595 | * @param[in] pSrcB points to the second input vector
|
---|
2596 | * @param[in] blockSize number of samples in each vector
|
---|
2597 | * @param[out] result output result returned here
|
---|
2598 | */
|
---|
2599 | void arm_dot_prod_f32(
|
---|
2600 | float32_t * pSrcA,
|
---|
2601 | float32_t * pSrcB,
|
---|
2602 | uint32_t blockSize,
|
---|
2603 | float32_t * result);
|
---|
2604 |
|
---|
2605 |
|
---|
2606 | /**
|
---|
2607 | * @brief Dot product of Q7 vectors.
|
---|
2608 | * @param[in] pSrcA points to the first input vector
|
---|
2609 | * @param[in] pSrcB points to the second input vector
|
---|
2610 | * @param[in] blockSize number of samples in each vector
|
---|
2611 | * @param[out] result output result returned here
|
---|
2612 | */
|
---|
2613 | void arm_dot_prod_q7(
|
---|
2614 | q7_t * pSrcA,
|
---|
2615 | q7_t * pSrcB,
|
---|
2616 | uint32_t blockSize,
|
---|
2617 | q31_t * result);
|
---|
2618 |
|
---|
2619 |
|
---|
2620 | /**
|
---|
2621 | * @brief Dot product of Q15 vectors.
|
---|
2622 | * @param[in] pSrcA points to the first input vector
|
---|
2623 | * @param[in] pSrcB points to the second input vector
|
---|
2624 | * @param[in] blockSize number of samples in each vector
|
---|
2625 | * @param[out] result output result returned here
|
---|
2626 | */
|
---|
2627 | void arm_dot_prod_q15(
|
---|
2628 | q15_t * pSrcA,
|
---|
2629 | q15_t * pSrcB,
|
---|
2630 | uint32_t blockSize,
|
---|
2631 | q63_t * result);
|
---|
2632 |
|
---|
2633 |
|
---|
2634 | /**
|
---|
2635 | * @brief Dot product of Q31 vectors.
|
---|
2636 | * @param[in] pSrcA points to the first input vector
|
---|
2637 | * @param[in] pSrcB points to the second input vector
|
---|
2638 | * @param[in] blockSize number of samples in each vector
|
---|
2639 | * @param[out] result output result returned here
|
---|
2640 | */
|
---|
2641 | void arm_dot_prod_q31(
|
---|
2642 | q31_t * pSrcA,
|
---|
2643 | q31_t * pSrcB,
|
---|
2644 | uint32_t blockSize,
|
---|
2645 | q63_t * result);
|
---|
2646 |
|
---|
2647 |
|
---|
2648 | /**
|
---|
2649 | * @brief Shifts the elements of a Q7 vector a specified number of bits.
|
---|
2650 | * @param[in] pSrc points to the input vector
|
---|
2651 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
---|
2652 | * @param[out] pDst points to the output vector
|
---|
2653 | * @param[in] blockSize number of samples in the vector
|
---|
2654 | */
|
---|
2655 | void arm_shift_q7(
|
---|
2656 | q7_t * pSrc,
|
---|
2657 | int8_t shiftBits,
|
---|
2658 | q7_t * pDst,
|
---|
2659 | uint32_t blockSize);
|
---|
2660 |
|
---|
2661 |
|
---|
2662 | /**
|
---|
2663 | * @brief Shifts the elements of a Q15 vector a specified number of bits.
|
---|
2664 | * @param[in] pSrc points to the input vector
|
---|
2665 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
---|
2666 | * @param[out] pDst points to the output vector
|
---|
2667 | * @param[in] blockSize number of samples in the vector
|
---|
2668 | */
|
---|
2669 | void arm_shift_q15(
|
---|
2670 | q15_t * pSrc,
|
---|
2671 | int8_t shiftBits,
|
---|
2672 | q15_t * pDst,
|
---|
2673 | uint32_t blockSize);
|
---|
2674 |
|
---|
2675 |
|
---|
2676 | /**
|
---|
2677 | * @brief Shifts the elements of a Q31 vector a specified number of bits.
|
---|
2678 | * @param[in] pSrc points to the input vector
|
---|
2679 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
---|
2680 | * @param[out] pDst points to the output vector
|
---|
2681 | * @param[in] blockSize number of samples in the vector
|
---|
2682 | */
|
---|
2683 | void arm_shift_q31(
|
---|
2684 | q31_t * pSrc,
|
---|
2685 | int8_t shiftBits,
|
---|
2686 | q31_t * pDst,
|
---|
2687 | uint32_t blockSize);
|
---|
2688 |
|
---|
2689 |
|
---|
2690 | /**
|
---|
2691 | * @brief Adds a constant offset to a floating-point vector.
|
---|
2692 | * @param[in] pSrc points to the input vector
|
---|
2693 | * @param[in] offset is the offset to be added
|
---|
2694 | * @param[out] pDst points to the output vector
|
---|
2695 | * @param[in] blockSize number of samples in the vector
|
---|
2696 | */
|
---|
2697 | void arm_offset_f32(
|
---|
2698 | float32_t * pSrc,
|
---|
2699 | float32_t offset,
|
---|
2700 | float32_t * pDst,
|
---|
2701 | uint32_t blockSize);
|
---|
2702 |
|
---|
2703 |
|
---|
2704 | /**
|
---|
2705 | * @brief Adds a constant offset to a Q7 vector.
|
---|
2706 | * @param[in] pSrc points to the input vector
|
---|
2707 | * @param[in] offset is the offset to be added
|
---|
2708 | * @param[out] pDst points to the output vector
|
---|
2709 | * @param[in] blockSize number of samples in the vector
|
---|
2710 | */
|
---|
2711 | void arm_offset_q7(
|
---|
2712 | q7_t * pSrc,
|
---|
2713 | q7_t offset,
|
---|
2714 | q7_t * pDst,
|
---|
2715 | uint32_t blockSize);
|
---|
2716 |
|
---|
2717 |
|
---|
2718 | /**
|
---|
2719 | * @brief Adds a constant offset to a Q15 vector.
|
---|
2720 | * @param[in] pSrc points to the input vector
|
---|
2721 | * @param[in] offset is the offset to be added
|
---|
2722 | * @param[out] pDst points to the output vector
|
---|
2723 | * @param[in] blockSize number of samples in the vector
|
---|
2724 | */
|
---|
2725 | void arm_offset_q15(
|
---|
2726 | q15_t * pSrc,
|
---|
2727 | q15_t offset,
|
---|
2728 | q15_t * pDst,
|
---|
2729 | uint32_t blockSize);
|
---|
2730 |
|
---|
2731 |
|
---|
2732 | /**
|
---|
2733 | * @brief Adds a constant offset to a Q31 vector.
|
---|
2734 | * @param[in] pSrc points to the input vector
|
---|
2735 | * @param[in] offset is the offset to be added
|
---|
2736 | * @param[out] pDst points to the output vector
|
---|
2737 | * @param[in] blockSize number of samples in the vector
|
---|
2738 | */
|
---|
2739 | void arm_offset_q31(
|
---|
2740 | q31_t * pSrc,
|
---|
2741 | q31_t offset,
|
---|
2742 | q31_t * pDst,
|
---|
2743 | uint32_t blockSize);
|
---|
2744 |
|
---|
2745 |
|
---|
2746 | /**
|
---|
2747 | * @brief Negates the elements of a floating-point vector.
|
---|
2748 | * @param[in] pSrc points to the input vector
|
---|
2749 | * @param[out] pDst points to the output vector
|
---|
2750 | * @param[in] blockSize number of samples in the vector
|
---|
2751 | */
|
---|
2752 | void arm_negate_f32(
|
---|
2753 | float32_t * pSrc,
|
---|
2754 | float32_t * pDst,
|
---|
2755 | uint32_t blockSize);
|
---|
2756 |
|
---|
2757 |
|
---|
2758 | /**
|
---|
2759 | * @brief Negates the elements of a Q7 vector.
|
---|
2760 | * @param[in] pSrc points to the input vector
|
---|
2761 | * @param[out] pDst points to the output vector
|
---|
2762 | * @param[in] blockSize number of samples in the vector
|
---|
2763 | */
|
---|
2764 | void arm_negate_q7(
|
---|
2765 | q7_t * pSrc,
|
---|
2766 | q7_t * pDst,
|
---|
2767 | uint32_t blockSize);
|
---|
2768 |
|
---|
2769 |
|
---|
2770 | /**
|
---|
2771 | * @brief Negates the elements of a Q15 vector.
|
---|
2772 | * @param[in] pSrc points to the input vector
|
---|
2773 | * @param[out] pDst points to the output vector
|
---|
2774 | * @param[in] blockSize number of samples in the vector
|
---|
2775 | */
|
---|
2776 | void arm_negate_q15(
|
---|
2777 | q15_t * pSrc,
|
---|
2778 | q15_t * pDst,
|
---|
2779 | uint32_t blockSize);
|
---|
2780 |
|
---|
2781 |
|
---|
2782 | /**
|
---|
2783 | * @brief Negates the elements of a Q31 vector.
|
---|
2784 | * @param[in] pSrc points to the input vector
|
---|
2785 | * @param[out] pDst points to the output vector
|
---|
2786 | * @param[in] blockSize number of samples in the vector
|
---|
2787 | */
|
---|
2788 | void arm_negate_q31(
|
---|
2789 | q31_t * pSrc,
|
---|
2790 | q31_t * pDst,
|
---|
2791 | uint32_t blockSize);
|
---|
2792 |
|
---|
2793 |
|
---|
2794 | /**
|
---|
2795 | * @brief Copies the elements of a floating-point vector.
|
---|
2796 | * @param[in] pSrc input pointer
|
---|
2797 | * @param[out] pDst output pointer
|
---|
2798 | * @param[in] blockSize number of samples to process
|
---|
2799 | */
|
---|
2800 | void arm_copy_f32(
|
---|
2801 | float32_t * pSrc,
|
---|
2802 | float32_t * pDst,
|
---|
2803 | uint32_t blockSize);
|
---|
2804 |
|
---|
2805 |
|
---|
2806 | /**
|
---|
2807 | * @brief Copies the elements of a Q7 vector.
|
---|
2808 | * @param[in] pSrc input pointer
|
---|
2809 | * @param[out] pDst output pointer
|
---|
2810 | * @param[in] blockSize number of samples to process
|
---|
2811 | */
|
---|
2812 | void arm_copy_q7(
|
---|
2813 | q7_t * pSrc,
|
---|
2814 | q7_t * pDst,
|
---|
2815 | uint32_t blockSize);
|
---|
2816 |
|
---|
2817 |
|
---|
2818 | /**
|
---|
2819 | * @brief Copies the elements of a Q15 vector.
|
---|
2820 | * @param[in] pSrc input pointer
|
---|
2821 | * @param[out] pDst output pointer
|
---|
2822 | * @param[in] blockSize number of samples to process
|
---|
2823 | */
|
---|
2824 | void arm_copy_q15(
|
---|
2825 | q15_t * pSrc,
|
---|
2826 | q15_t * pDst,
|
---|
2827 | uint32_t blockSize);
|
---|
2828 |
|
---|
2829 |
|
---|
2830 | /**
|
---|
2831 | * @brief Copies the elements of a Q31 vector.
|
---|
2832 | * @param[in] pSrc input pointer
|
---|
2833 | * @param[out] pDst output pointer
|
---|
2834 | * @param[in] blockSize number of samples to process
|
---|
2835 | */
|
---|
2836 | void arm_copy_q31(
|
---|
2837 | q31_t * pSrc,
|
---|
2838 | q31_t * pDst,
|
---|
2839 | uint32_t blockSize);
|
---|
2840 |
|
---|
2841 |
|
---|
2842 | /**
|
---|
2843 | * @brief Fills a constant value into a floating-point vector.
|
---|
2844 | * @param[in] value input value to be filled
|
---|
2845 | * @param[out] pDst output pointer
|
---|
2846 | * @param[in] blockSize number of samples to process
|
---|
2847 | */
|
---|
2848 | void arm_fill_f32(
|
---|
2849 | float32_t value,
|
---|
2850 | float32_t * pDst,
|
---|
2851 | uint32_t blockSize);
|
---|
2852 |
|
---|
2853 |
|
---|
2854 | /**
|
---|
2855 | * @brief Fills a constant value into a Q7 vector.
|
---|
2856 | * @param[in] value input value to be filled
|
---|
2857 | * @param[out] pDst output pointer
|
---|
2858 | * @param[in] blockSize number of samples to process
|
---|
2859 | */
|
---|
2860 | void arm_fill_q7(
|
---|
2861 | q7_t value,
|
---|
2862 | q7_t * pDst,
|
---|
2863 | uint32_t blockSize);
|
---|
2864 |
|
---|
2865 |
|
---|
2866 | /**
|
---|
2867 | * @brief Fills a constant value into a Q15 vector.
|
---|
2868 | * @param[in] value input value to be filled
|
---|
2869 | * @param[out] pDst output pointer
|
---|
2870 | * @param[in] blockSize number of samples to process
|
---|
2871 | */
|
---|
2872 | void arm_fill_q15(
|
---|
2873 | q15_t value,
|
---|
2874 | q15_t * pDst,
|
---|
2875 | uint32_t blockSize);
|
---|
2876 |
|
---|
2877 |
|
---|
2878 | /**
|
---|
2879 | * @brief Fills a constant value into a Q31 vector.
|
---|
2880 | * @param[in] value input value to be filled
|
---|
2881 | * @param[out] pDst output pointer
|
---|
2882 | * @param[in] blockSize number of samples to process
|
---|
2883 | */
|
---|
2884 | void arm_fill_q31(
|
---|
2885 | q31_t value,
|
---|
2886 | q31_t * pDst,
|
---|
2887 | uint32_t blockSize);
|
---|
2888 |
|
---|
2889 |
|
---|
2890 | /**
|
---|
2891 | * @brief Convolution of floating-point sequences.
|
---|
2892 | * @param[in] pSrcA points to the first input sequence.
|
---|
2893 | * @param[in] srcALen length of the first input sequence.
|
---|
2894 | * @param[in] pSrcB points to the second input sequence.
|
---|
2895 | * @param[in] srcBLen length of the second input sequence.
|
---|
2896 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
---|
2897 | */
|
---|
2898 | void arm_conv_f32(
|
---|
2899 | float32_t * pSrcA,
|
---|
2900 | uint32_t srcALen,
|
---|
2901 | float32_t * pSrcB,
|
---|
2902 | uint32_t srcBLen,
|
---|
2903 | float32_t * pDst);
|
---|
2904 |
|
---|
2905 |
|
---|
2906 | /**
|
---|
2907 | * @brief Convolution of Q15 sequences.
|
---|
2908 | * @param[in] pSrcA points to the first input sequence.
|
---|
2909 | * @param[in] srcALen length of the first input sequence.
|
---|
2910 | * @param[in] pSrcB points to the second input sequence.
|
---|
2911 | * @param[in] srcBLen length of the second input sequence.
|
---|
2912 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
---|
2913 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
2914 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
---|
2915 | */
|
---|
2916 | void arm_conv_opt_q15(
|
---|
2917 | q15_t * pSrcA,
|
---|
2918 | uint32_t srcALen,
|
---|
2919 | q15_t * pSrcB,
|
---|
2920 | uint32_t srcBLen,
|
---|
2921 | q15_t * pDst,
|
---|
2922 | q15_t * pScratch1,
|
---|
2923 | q15_t * pScratch2);
|
---|
2924 |
|
---|
2925 |
|
---|
2926 | /**
|
---|
2927 | * @brief Convolution of Q15 sequences.
|
---|
2928 | * @param[in] pSrcA points to the first input sequence.
|
---|
2929 | * @param[in] srcALen length of the first input sequence.
|
---|
2930 | * @param[in] pSrcB points to the second input sequence.
|
---|
2931 | * @param[in] srcBLen length of the second input sequence.
|
---|
2932 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
---|
2933 | */
|
---|
2934 | void arm_conv_q15(
|
---|
2935 | q15_t * pSrcA,
|
---|
2936 | uint32_t srcALen,
|
---|
2937 | q15_t * pSrcB,
|
---|
2938 | uint32_t srcBLen,
|
---|
2939 | q15_t * pDst);
|
---|
2940 |
|
---|
2941 |
|
---|
2942 | /**
|
---|
2943 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
|
---|
2944 | * @param[in] pSrcA points to the first input sequence.
|
---|
2945 | * @param[in] srcALen length of the first input sequence.
|
---|
2946 | * @param[in] pSrcB points to the second input sequence.
|
---|
2947 | * @param[in] srcBLen length of the second input sequence.
|
---|
2948 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
---|
2949 | */
|
---|
2950 | void arm_conv_fast_q15(
|
---|
2951 | q15_t * pSrcA,
|
---|
2952 | uint32_t srcALen,
|
---|
2953 | q15_t * pSrcB,
|
---|
2954 | uint32_t srcBLen,
|
---|
2955 | q15_t * pDst);
|
---|
2956 |
|
---|
2957 |
|
---|
2958 | /**
|
---|
2959 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
|
---|
2960 | * @param[in] pSrcA points to the first input sequence.
|
---|
2961 | * @param[in] srcALen length of the first input sequence.
|
---|
2962 | * @param[in] pSrcB points to the second input sequence.
|
---|
2963 | * @param[in] srcBLen length of the second input sequence.
|
---|
2964 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
---|
2965 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
2966 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
---|
2967 | */
|
---|
2968 | void arm_conv_fast_opt_q15(
|
---|
2969 | q15_t * pSrcA,
|
---|
2970 | uint32_t srcALen,
|
---|
2971 | q15_t * pSrcB,
|
---|
2972 | uint32_t srcBLen,
|
---|
2973 | q15_t * pDst,
|
---|
2974 | q15_t * pScratch1,
|
---|
2975 | q15_t * pScratch2);
|
---|
2976 |
|
---|
2977 |
|
---|
2978 | /**
|
---|
2979 | * @brief Convolution of Q31 sequences.
|
---|
2980 | * @param[in] pSrcA points to the first input sequence.
|
---|
2981 | * @param[in] srcALen length of the first input sequence.
|
---|
2982 | * @param[in] pSrcB points to the second input sequence.
|
---|
2983 | * @param[in] srcBLen length of the second input sequence.
|
---|
2984 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
---|
2985 | */
|
---|
2986 | void arm_conv_q31(
|
---|
2987 | q31_t * pSrcA,
|
---|
2988 | uint32_t srcALen,
|
---|
2989 | q31_t * pSrcB,
|
---|
2990 | uint32_t srcBLen,
|
---|
2991 | q31_t * pDst);
|
---|
2992 |
|
---|
2993 |
|
---|
2994 | /**
|
---|
2995 | * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
|
---|
2996 | * @param[in] pSrcA points to the first input sequence.
|
---|
2997 | * @param[in] srcALen length of the first input sequence.
|
---|
2998 | * @param[in] pSrcB points to the second input sequence.
|
---|
2999 | * @param[in] srcBLen length of the second input sequence.
|
---|
3000 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
---|
3001 | */
|
---|
3002 | void arm_conv_fast_q31(
|
---|
3003 | q31_t * pSrcA,
|
---|
3004 | uint32_t srcALen,
|
---|
3005 | q31_t * pSrcB,
|
---|
3006 | uint32_t srcBLen,
|
---|
3007 | q31_t * pDst);
|
---|
3008 |
|
---|
3009 |
|
---|
3010 | /**
|
---|
3011 | * @brief Convolution of Q7 sequences.
|
---|
3012 | * @param[in] pSrcA points to the first input sequence.
|
---|
3013 | * @param[in] srcALen length of the first input sequence.
|
---|
3014 | * @param[in] pSrcB points to the second input sequence.
|
---|
3015 | * @param[in] srcBLen length of the second input sequence.
|
---|
3016 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
---|
3017 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
3018 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
|
---|
3019 | */
|
---|
3020 | void arm_conv_opt_q7(
|
---|
3021 | q7_t * pSrcA,
|
---|
3022 | uint32_t srcALen,
|
---|
3023 | q7_t * pSrcB,
|
---|
3024 | uint32_t srcBLen,
|
---|
3025 | q7_t * pDst,
|
---|
3026 | q15_t * pScratch1,
|
---|
3027 | q15_t * pScratch2);
|
---|
3028 |
|
---|
3029 |
|
---|
3030 | /**
|
---|
3031 | * @brief Convolution of Q7 sequences.
|
---|
3032 | * @param[in] pSrcA points to the first input sequence.
|
---|
3033 | * @param[in] srcALen length of the first input sequence.
|
---|
3034 | * @param[in] pSrcB points to the second input sequence.
|
---|
3035 | * @param[in] srcBLen length of the second input sequence.
|
---|
3036 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
---|
3037 | */
|
---|
3038 | void arm_conv_q7(
|
---|
3039 | q7_t * pSrcA,
|
---|
3040 | uint32_t srcALen,
|
---|
3041 | q7_t * pSrcB,
|
---|
3042 | uint32_t srcBLen,
|
---|
3043 | q7_t * pDst);
|
---|
3044 |
|
---|
3045 |
|
---|
3046 | /**
|
---|
3047 | * @brief Partial convolution of floating-point sequences.
|
---|
3048 | * @param[in] pSrcA points to the first input sequence.
|
---|
3049 | * @param[in] srcALen length of the first input sequence.
|
---|
3050 | * @param[in] pSrcB points to the second input sequence.
|
---|
3051 | * @param[in] srcBLen length of the second input sequence.
|
---|
3052 | * @param[out] pDst points to the block of output data
|
---|
3053 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3054 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3055 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3056 | */
|
---|
3057 | arm_status arm_conv_partial_f32(
|
---|
3058 | float32_t * pSrcA,
|
---|
3059 | uint32_t srcALen,
|
---|
3060 | float32_t * pSrcB,
|
---|
3061 | uint32_t srcBLen,
|
---|
3062 | float32_t * pDst,
|
---|
3063 | uint32_t firstIndex,
|
---|
3064 | uint32_t numPoints);
|
---|
3065 |
|
---|
3066 |
|
---|
3067 | /**
|
---|
3068 | * @brief Partial convolution of Q15 sequences.
|
---|
3069 | * @param[in] pSrcA points to the first input sequence.
|
---|
3070 | * @param[in] srcALen length of the first input sequence.
|
---|
3071 | * @param[in] pSrcB points to the second input sequence.
|
---|
3072 | * @param[in] srcBLen length of the second input sequence.
|
---|
3073 | * @param[out] pDst points to the block of output data
|
---|
3074 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3075 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3076 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
3077 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
---|
3078 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3079 | */
|
---|
3080 | arm_status arm_conv_partial_opt_q15(
|
---|
3081 | q15_t * pSrcA,
|
---|
3082 | uint32_t srcALen,
|
---|
3083 | q15_t * pSrcB,
|
---|
3084 | uint32_t srcBLen,
|
---|
3085 | q15_t * pDst,
|
---|
3086 | uint32_t firstIndex,
|
---|
3087 | uint32_t numPoints,
|
---|
3088 | q15_t * pScratch1,
|
---|
3089 | q15_t * pScratch2);
|
---|
3090 |
|
---|
3091 |
|
---|
3092 | /**
|
---|
3093 | * @brief Partial convolution of Q15 sequences.
|
---|
3094 | * @param[in] pSrcA points to the first input sequence.
|
---|
3095 | * @param[in] srcALen length of the first input sequence.
|
---|
3096 | * @param[in] pSrcB points to the second input sequence.
|
---|
3097 | * @param[in] srcBLen length of the second input sequence.
|
---|
3098 | * @param[out] pDst points to the block of output data
|
---|
3099 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3100 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3101 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3102 | */
|
---|
3103 | arm_status arm_conv_partial_q15(
|
---|
3104 | q15_t * pSrcA,
|
---|
3105 | uint32_t srcALen,
|
---|
3106 | q15_t * pSrcB,
|
---|
3107 | uint32_t srcBLen,
|
---|
3108 | q15_t * pDst,
|
---|
3109 | uint32_t firstIndex,
|
---|
3110 | uint32_t numPoints);
|
---|
3111 |
|
---|
3112 |
|
---|
3113 | /**
|
---|
3114 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
|
---|
3115 | * @param[in] pSrcA points to the first input sequence.
|
---|
3116 | * @param[in] srcALen length of the first input sequence.
|
---|
3117 | * @param[in] pSrcB points to the second input sequence.
|
---|
3118 | * @param[in] srcBLen length of the second input sequence.
|
---|
3119 | * @param[out] pDst points to the block of output data
|
---|
3120 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3121 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3122 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3123 | */
|
---|
3124 | arm_status arm_conv_partial_fast_q15(
|
---|
3125 | q15_t * pSrcA,
|
---|
3126 | uint32_t srcALen,
|
---|
3127 | q15_t * pSrcB,
|
---|
3128 | uint32_t srcBLen,
|
---|
3129 | q15_t * pDst,
|
---|
3130 | uint32_t firstIndex,
|
---|
3131 | uint32_t numPoints);
|
---|
3132 |
|
---|
3133 |
|
---|
3134 | /**
|
---|
3135 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
|
---|
3136 | * @param[in] pSrcA points to the first input sequence.
|
---|
3137 | * @param[in] srcALen length of the first input sequence.
|
---|
3138 | * @param[in] pSrcB points to the second input sequence.
|
---|
3139 | * @param[in] srcBLen length of the second input sequence.
|
---|
3140 | * @param[out] pDst points to the block of output data
|
---|
3141 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3142 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3143 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
3144 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
---|
3145 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3146 | */
|
---|
3147 | arm_status arm_conv_partial_fast_opt_q15(
|
---|
3148 | q15_t * pSrcA,
|
---|
3149 | uint32_t srcALen,
|
---|
3150 | q15_t * pSrcB,
|
---|
3151 | uint32_t srcBLen,
|
---|
3152 | q15_t * pDst,
|
---|
3153 | uint32_t firstIndex,
|
---|
3154 | uint32_t numPoints,
|
---|
3155 | q15_t * pScratch1,
|
---|
3156 | q15_t * pScratch2);
|
---|
3157 |
|
---|
3158 |
|
---|
3159 | /**
|
---|
3160 | * @brief Partial convolution of Q31 sequences.
|
---|
3161 | * @param[in] pSrcA points to the first input sequence.
|
---|
3162 | * @param[in] srcALen length of the first input sequence.
|
---|
3163 | * @param[in] pSrcB points to the second input sequence.
|
---|
3164 | * @param[in] srcBLen length of the second input sequence.
|
---|
3165 | * @param[out] pDst points to the block of output data
|
---|
3166 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3167 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3168 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3169 | */
|
---|
3170 | arm_status arm_conv_partial_q31(
|
---|
3171 | q31_t * pSrcA,
|
---|
3172 | uint32_t srcALen,
|
---|
3173 | q31_t * pSrcB,
|
---|
3174 | uint32_t srcBLen,
|
---|
3175 | q31_t * pDst,
|
---|
3176 | uint32_t firstIndex,
|
---|
3177 | uint32_t numPoints);
|
---|
3178 |
|
---|
3179 |
|
---|
3180 | /**
|
---|
3181 | * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
|
---|
3182 | * @param[in] pSrcA points to the first input sequence.
|
---|
3183 | * @param[in] srcALen length of the first input sequence.
|
---|
3184 | * @param[in] pSrcB points to the second input sequence.
|
---|
3185 | * @param[in] srcBLen length of the second input sequence.
|
---|
3186 | * @param[out] pDst points to the block of output data
|
---|
3187 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3188 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3189 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3190 | */
|
---|
3191 | arm_status arm_conv_partial_fast_q31(
|
---|
3192 | q31_t * pSrcA,
|
---|
3193 | uint32_t srcALen,
|
---|
3194 | q31_t * pSrcB,
|
---|
3195 | uint32_t srcBLen,
|
---|
3196 | q31_t * pDst,
|
---|
3197 | uint32_t firstIndex,
|
---|
3198 | uint32_t numPoints);
|
---|
3199 |
|
---|
3200 |
|
---|
3201 | /**
|
---|
3202 | * @brief Partial convolution of Q7 sequences
|
---|
3203 | * @param[in] pSrcA points to the first input sequence.
|
---|
3204 | * @param[in] srcALen length of the first input sequence.
|
---|
3205 | * @param[in] pSrcB points to the second input sequence.
|
---|
3206 | * @param[in] srcBLen length of the second input sequence.
|
---|
3207 | * @param[out] pDst points to the block of output data
|
---|
3208 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3209 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3210 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
3211 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
|
---|
3212 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3213 | */
|
---|
3214 | arm_status arm_conv_partial_opt_q7(
|
---|
3215 | q7_t * pSrcA,
|
---|
3216 | uint32_t srcALen,
|
---|
3217 | q7_t * pSrcB,
|
---|
3218 | uint32_t srcBLen,
|
---|
3219 | q7_t * pDst,
|
---|
3220 | uint32_t firstIndex,
|
---|
3221 | uint32_t numPoints,
|
---|
3222 | q15_t * pScratch1,
|
---|
3223 | q15_t * pScratch2);
|
---|
3224 |
|
---|
3225 |
|
---|
3226 | /**
|
---|
3227 | * @brief Partial convolution of Q7 sequences.
|
---|
3228 | * @param[in] pSrcA points to the first input sequence.
|
---|
3229 | * @param[in] srcALen length of the first input sequence.
|
---|
3230 | * @param[in] pSrcB points to the second input sequence.
|
---|
3231 | * @param[in] srcBLen length of the second input sequence.
|
---|
3232 | * @param[out] pDst points to the block of output data
|
---|
3233 | * @param[in] firstIndex is the first output sample to start with.
|
---|
3234 | * @param[in] numPoints is the number of output points to be computed.
|
---|
3235 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
---|
3236 | */
|
---|
3237 | arm_status arm_conv_partial_q7(
|
---|
3238 | q7_t * pSrcA,
|
---|
3239 | uint32_t srcALen,
|
---|
3240 | q7_t * pSrcB,
|
---|
3241 | uint32_t srcBLen,
|
---|
3242 | q7_t * pDst,
|
---|
3243 | uint32_t firstIndex,
|
---|
3244 | uint32_t numPoints);
|
---|
3245 |
|
---|
3246 |
|
---|
3247 | /**
|
---|
3248 | * @brief Instance structure for the Q15 FIR decimator.
|
---|
3249 | */
|
---|
3250 | typedef struct
|
---|
3251 | {
|
---|
3252 | uint8_t M; /**< decimation factor. */
|
---|
3253 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
3254 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
3255 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
3256 | } arm_fir_decimate_instance_q15;
|
---|
3257 |
|
---|
3258 | /**
|
---|
3259 | * @brief Instance structure for the Q31 FIR decimator.
|
---|
3260 | */
|
---|
3261 | typedef struct
|
---|
3262 | {
|
---|
3263 | uint8_t M; /**< decimation factor. */
|
---|
3264 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
3265 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
3266 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
3267 | } arm_fir_decimate_instance_q31;
|
---|
3268 |
|
---|
3269 | /**
|
---|
3270 | * @brief Instance structure for the floating-point FIR decimator.
|
---|
3271 | */
|
---|
3272 | typedef struct
|
---|
3273 | {
|
---|
3274 | uint8_t M; /**< decimation factor. */
|
---|
3275 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
3276 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
3277 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
3278 | } arm_fir_decimate_instance_f32;
|
---|
3279 |
|
---|
3280 |
|
---|
3281 | /**
|
---|
3282 | * @brief Processing function for the floating-point FIR decimator.
|
---|
3283 | * @param[in] S points to an instance of the floating-point FIR decimator structure.
|
---|
3284 | * @param[in] pSrc points to the block of input data.
|
---|
3285 | * @param[out] pDst points to the block of output data
|
---|
3286 | * @param[in] blockSize number of input samples to process per call.
|
---|
3287 | */
|
---|
3288 | void arm_fir_decimate_f32(
|
---|
3289 | const arm_fir_decimate_instance_f32 * S,
|
---|
3290 | float32_t * pSrc,
|
---|
3291 | float32_t * pDst,
|
---|
3292 | uint32_t blockSize);
|
---|
3293 |
|
---|
3294 |
|
---|
3295 | /**
|
---|
3296 | * @brief Initialization function for the floating-point FIR decimator.
|
---|
3297 | * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
|
---|
3298 | * @param[in] numTaps number of coefficients in the filter.
|
---|
3299 | * @param[in] M decimation factor.
|
---|
3300 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
3301 | * @param[in] pState points to the state buffer.
|
---|
3302 | * @param[in] blockSize number of input samples to process per call.
|
---|
3303 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
---|
3304 | * <code>blockSize</code> is not a multiple of <code>M</code>.
|
---|
3305 | */
|
---|
3306 | arm_status arm_fir_decimate_init_f32(
|
---|
3307 | arm_fir_decimate_instance_f32 * S,
|
---|
3308 | uint16_t numTaps,
|
---|
3309 | uint8_t M,
|
---|
3310 | float32_t * pCoeffs,
|
---|
3311 | float32_t * pState,
|
---|
3312 | uint32_t blockSize);
|
---|
3313 |
|
---|
3314 |
|
---|
3315 | /**
|
---|
3316 | * @brief Processing function for the Q15 FIR decimator.
|
---|
3317 | * @param[in] S points to an instance of the Q15 FIR decimator structure.
|
---|
3318 | * @param[in] pSrc points to the block of input data.
|
---|
3319 | * @param[out] pDst points to the block of output data
|
---|
3320 | * @param[in] blockSize number of input samples to process per call.
|
---|
3321 | */
|
---|
3322 | void arm_fir_decimate_q15(
|
---|
3323 | const arm_fir_decimate_instance_q15 * S,
|
---|
3324 | q15_t * pSrc,
|
---|
3325 | q15_t * pDst,
|
---|
3326 | uint32_t blockSize);
|
---|
3327 |
|
---|
3328 |
|
---|
3329 | /**
|
---|
3330 | * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
|
---|
3331 | * @param[in] S points to an instance of the Q15 FIR decimator structure.
|
---|
3332 | * @param[in] pSrc points to the block of input data.
|
---|
3333 | * @param[out] pDst points to the block of output data
|
---|
3334 | * @param[in] blockSize number of input samples to process per call.
|
---|
3335 | */
|
---|
3336 | void arm_fir_decimate_fast_q15(
|
---|
3337 | const arm_fir_decimate_instance_q15 * S,
|
---|
3338 | q15_t * pSrc,
|
---|
3339 | q15_t * pDst,
|
---|
3340 | uint32_t blockSize);
|
---|
3341 |
|
---|
3342 |
|
---|
3343 | /**
|
---|
3344 | * @brief Initialization function for the Q15 FIR decimator.
|
---|
3345 | * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
|
---|
3346 | * @param[in] numTaps number of coefficients in the filter.
|
---|
3347 | * @param[in] M decimation factor.
|
---|
3348 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
3349 | * @param[in] pState points to the state buffer.
|
---|
3350 | * @param[in] blockSize number of input samples to process per call.
|
---|
3351 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
---|
3352 | * <code>blockSize</code> is not a multiple of <code>M</code>.
|
---|
3353 | */
|
---|
3354 | arm_status arm_fir_decimate_init_q15(
|
---|
3355 | arm_fir_decimate_instance_q15 * S,
|
---|
3356 | uint16_t numTaps,
|
---|
3357 | uint8_t M,
|
---|
3358 | q15_t * pCoeffs,
|
---|
3359 | q15_t * pState,
|
---|
3360 | uint32_t blockSize);
|
---|
3361 |
|
---|
3362 |
|
---|
3363 | /**
|
---|
3364 | * @brief Processing function for the Q31 FIR decimator.
|
---|
3365 | * @param[in] S points to an instance of the Q31 FIR decimator structure.
|
---|
3366 | * @param[in] pSrc points to the block of input data.
|
---|
3367 | * @param[out] pDst points to the block of output data
|
---|
3368 | * @param[in] blockSize number of input samples to process per call.
|
---|
3369 | */
|
---|
3370 | void arm_fir_decimate_q31(
|
---|
3371 | const arm_fir_decimate_instance_q31 * S,
|
---|
3372 | q31_t * pSrc,
|
---|
3373 | q31_t * pDst,
|
---|
3374 | uint32_t blockSize);
|
---|
3375 |
|
---|
3376 | /**
|
---|
3377 | * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
|
---|
3378 | * @param[in] S points to an instance of the Q31 FIR decimator structure.
|
---|
3379 | * @param[in] pSrc points to the block of input data.
|
---|
3380 | * @param[out] pDst points to the block of output data
|
---|
3381 | * @param[in] blockSize number of input samples to process per call.
|
---|
3382 | */
|
---|
3383 | void arm_fir_decimate_fast_q31(
|
---|
3384 | arm_fir_decimate_instance_q31 * S,
|
---|
3385 | q31_t * pSrc,
|
---|
3386 | q31_t * pDst,
|
---|
3387 | uint32_t blockSize);
|
---|
3388 |
|
---|
3389 |
|
---|
3390 | /**
|
---|
3391 | * @brief Initialization function for the Q31 FIR decimator.
|
---|
3392 | * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
|
---|
3393 | * @param[in] numTaps number of coefficients in the filter.
|
---|
3394 | * @param[in] M decimation factor.
|
---|
3395 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
3396 | * @param[in] pState points to the state buffer.
|
---|
3397 | * @param[in] blockSize number of input samples to process per call.
|
---|
3398 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
---|
3399 | * <code>blockSize</code> is not a multiple of <code>M</code>.
|
---|
3400 | */
|
---|
3401 | arm_status arm_fir_decimate_init_q31(
|
---|
3402 | arm_fir_decimate_instance_q31 * S,
|
---|
3403 | uint16_t numTaps,
|
---|
3404 | uint8_t M,
|
---|
3405 | q31_t * pCoeffs,
|
---|
3406 | q31_t * pState,
|
---|
3407 | uint32_t blockSize);
|
---|
3408 |
|
---|
3409 |
|
---|
3410 | /**
|
---|
3411 | * @brief Instance structure for the Q15 FIR interpolator.
|
---|
3412 | */
|
---|
3413 | typedef struct
|
---|
3414 | {
|
---|
3415 | uint8_t L; /**< upsample factor. */
|
---|
3416 | uint16_t phaseLength; /**< length of each polyphase filter component. */
|
---|
3417 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
---|
3418 | q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
|
---|
3419 | } arm_fir_interpolate_instance_q15;
|
---|
3420 |
|
---|
3421 | /**
|
---|
3422 | * @brief Instance structure for the Q31 FIR interpolator.
|
---|
3423 | */
|
---|
3424 | typedef struct
|
---|
3425 | {
|
---|
3426 | uint8_t L; /**< upsample factor. */
|
---|
3427 | uint16_t phaseLength; /**< length of each polyphase filter component. */
|
---|
3428 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
---|
3429 | q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
|
---|
3430 | } arm_fir_interpolate_instance_q31;
|
---|
3431 |
|
---|
3432 | /**
|
---|
3433 | * @brief Instance structure for the floating-point FIR interpolator.
|
---|
3434 | */
|
---|
3435 | typedef struct
|
---|
3436 | {
|
---|
3437 | uint8_t L; /**< upsample factor. */
|
---|
3438 | uint16_t phaseLength; /**< length of each polyphase filter component. */
|
---|
3439 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
---|
3440 | float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
|
---|
3441 | } arm_fir_interpolate_instance_f32;
|
---|
3442 |
|
---|
3443 |
|
---|
3444 | /**
|
---|
3445 | * @brief Processing function for the Q15 FIR interpolator.
|
---|
3446 | * @param[in] S points to an instance of the Q15 FIR interpolator structure.
|
---|
3447 | * @param[in] pSrc points to the block of input data.
|
---|
3448 | * @param[out] pDst points to the block of output data.
|
---|
3449 | * @param[in] blockSize number of input samples to process per call.
|
---|
3450 | */
|
---|
3451 | void arm_fir_interpolate_q15(
|
---|
3452 | const arm_fir_interpolate_instance_q15 * S,
|
---|
3453 | q15_t * pSrc,
|
---|
3454 | q15_t * pDst,
|
---|
3455 | uint32_t blockSize);
|
---|
3456 |
|
---|
3457 |
|
---|
3458 | /**
|
---|
3459 | * @brief Initialization function for the Q15 FIR interpolator.
|
---|
3460 | * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
|
---|
3461 | * @param[in] L upsample factor.
|
---|
3462 | * @param[in] numTaps number of filter coefficients in the filter.
|
---|
3463 | * @param[in] pCoeffs points to the filter coefficient buffer.
|
---|
3464 | * @param[in] pState points to the state buffer.
|
---|
3465 | * @param[in] blockSize number of input samples to process per call.
|
---|
3466 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
---|
3467 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
|
---|
3468 | */
|
---|
3469 | arm_status arm_fir_interpolate_init_q15(
|
---|
3470 | arm_fir_interpolate_instance_q15 * S,
|
---|
3471 | uint8_t L,
|
---|
3472 | uint16_t numTaps,
|
---|
3473 | q15_t * pCoeffs,
|
---|
3474 | q15_t * pState,
|
---|
3475 | uint32_t blockSize);
|
---|
3476 |
|
---|
3477 |
|
---|
3478 | /**
|
---|
3479 | * @brief Processing function for the Q31 FIR interpolator.
|
---|
3480 | * @param[in] S points to an instance of the Q15 FIR interpolator structure.
|
---|
3481 | * @param[in] pSrc points to the block of input data.
|
---|
3482 | * @param[out] pDst points to the block of output data.
|
---|
3483 | * @param[in] blockSize number of input samples to process per call.
|
---|
3484 | */
|
---|
3485 | void arm_fir_interpolate_q31(
|
---|
3486 | const arm_fir_interpolate_instance_q31 * S,
|
---|
3487 | q31_t * pSrc,
|
---|
3488 | q31_t * pDst,
|
---|
3489 | uint32_t blockSize);
|
---|
3490 |
|
---|
3491 |
|
---|
3492 | /**
|
---|
3493 | * @brief Initialization function for the Q31 FIR interpolator.
|
---|
3494 | * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
|
---|
3495 | * @param[in] L upsample factor.
|
---|
3496 | * @param[in] numTaps number of filter coefficients in the filter.
|
---|
3497 | * @param[in] pCoeffs points to the filter coefficient buffer.
|
---|
3498 | * @param[in] pState points to the state buffer.
|
---|
3499 | * @param[in] blockSize number of input samples to process per call.
|
---|
3500 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
---|
3501 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
|
---|
3502 | */
|
---|
3503 | arm_status arm_fir_interpolate_init_q31(
|
---|
3504 | arm_fir_interpolate_instance_q31 * S,
|
---|
3505 | uint8_t L,
|
---|
3506 | uint16_t numTaps,
|
---|
3507 | q31_t * pCoeffs,
|
---|
3508 | q31_t * pState,
|
---|
3509 | uint32_t blockSize);
|
---|
3510 |
|
---|
3511 |
|
---|
3512 | /**
|
---|
3513 | * @brief Processing function for the floating-point FIR interpolator.
|
---|
3514 | * @param[in] S points to an instance of the floating-point FIR interpolator structure.
|
---|
3515 | * @param[in] pSrc points to the block of input data.
|
---|
3516 | * @param[out] pDst points to the block of output data.
|
---|
3517 | * @param[in] blockSize number of input samples to process per call.
|
---|
3518 | */
|
---|
3519 | void arm_fir_interpolate_f32(
|
---|
3520 | const arm_fir_interpolate_instance_f32 * S,
|
---|
3521 | float32_t * pSrc,
|
---|
3522 | float32_t * pDst,
|
---|
3523 | uint32_t blockSize);
|
---|
3524 |
|
---|
3525 |
|
---|
3526 | /**
|
---|
3527 | * @brief Initialization function for the floating-point FIR interpolator.
|
---|
3528 | * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
|
---|
3529 | * @param[in] L upsample factor.
|
---|
3530 | * @param[in] numTaps number of filter coefficients in the filter.
|
---|
3531 | * @param[in] pCoeffs points to the filter coefficient buffer.
|
---|
3532 | * @param[in] pState points to the state buffer.
|
---|
3533 | * @param[in] blockSize number of input samples to process per call.
|
---|
3534 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
---|
3535 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
|
---|
3536 | */
|
---|
3537 | arm_status arm_fir_interpolate_init_f32(
|
---|
3538 | arm_fir_interpolate_instance_f32 * S,
|
---|
3539 | uint8_t L,
|
---|
3540 | uint16_t numTaps,
|
---|
3541 | float32_t * pCoeffs,
|
---|
3542 | float32_t * pState,
|
---|
3543 | uint32_t blockSize);
|
---|
3544 |
|
---|
3545 |
|
---|
3546 | /**
|
---|
3547 | * @brief Instance structure for the high precision Q31 Biquad cascade filter.
|
---|
3548 | */
|
---|
3549 | typedef struct
|
---|
3550 | {
|
---|
3551 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
---|
3552 | q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
|
---|
3553 | q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
---|
3554 | uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
|
---|
3555 | } arm_biquad_cas_df1_32x64_ins_q31;
|
---|
3556 |
|
---|
3557 |
|
---|
3558 | /**
|
---|
3559 | * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
|
---|
3560 | * @param[in] pSrc points to the block of input data.
|
---|
3561 | * @param[out] pDst points to the block of output data
|
---|
3562 | * @param[in] blockSize number of samples to process.
|
---|
3563 | */
|
---|
3564 | void arm_biquad_cas_df1_32x64_q31(
|
---|
3565 | const arm_biquad_cas_df1_32x64_ins_q31 * S,
|
---|
3566 | q31_t * pSrc,
|
---|
3567 | q31_t * pDst,
|
---|
3568 | uint32_t blockSize);
|
---|
3569 |
|
---|
3570 |
|
---|
3571 | /**
|
---|
3572 | * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
|
---|
3573 | * @param[in] numStages number of 2nd order stages in the filter.
|
---|
3574 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
3575 | * @param[in] pState points to the state buffer.
|
---|
3576 | * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
|
---|
3577 | */
|
---|
3578 | void arm_biquad_cas_df1_32x64_init_q31(
|
---|
3579 | arm_biquad_cas_df1_32x64_ins_q31 * S,
|
---|
3580 | uint8_t numStages,
|
---|
3581 | q31_t * pCoeffs,
|
---|
3582 | q63_t * pState,
|
---|
3583 | uint8_t postShift);
|
---|
3584 |
|
---|
3585 |
|
---|
3586 | /**
|
---|
3587 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
---|
3588 | */
|
---|
3589 | typedef struct
|
---|
3590 | {
|
---|
3591 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
---|
3592 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
|
---|
3593 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
---|
3594 | } arm_biquad_cascade_df2T_instance_f32;
|
---|
3595 |
|
---|
3596 | /**
|
---|
3597 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
---|
3598 | */
|
---|
3599 | typedef struct
|
---|
3600 | {
|
---|
3601 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
---|
3602 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
|
---|
3603 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
---|
3604 | } arm_biquad_cascade_stereo_df2T_instance_f32;
|
---|
3605 |
|
---|
3606 | /**
|
---|
3607 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
---|
3608 | */
|
---|
3609 | typedef struct
|
---|
3610 | {
|
---|
3611 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
---|
3612 | float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
|
---|
3613 | float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
---|
3614 | } arm_biquad_cascade_df2T_instance_f64;
|
---|
3615 |
|
---|
3616 |
|
---|
3617 | /**
|
---|
3618 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
|
---|
3619 | * @param[in] S points to an instance of the filter data structure.
|
---|
3620 | * @param[in] pSrc points to the block of input data.
|
---|
3621 | * @param[out] pDst points to the block of output data
|
---|
3622 | * @param[in] blockSize number of samples to process.
|
---|
3623 | */
|
---|
3624 | void arm_biquad_cascade_df2T_f32(
|
---|
3625 | const arm_biquad_cascade_df2T_instance_f32 * S,
|
---|
3626 | float32_t * pSrc,
|
---|
3627 | float32_t * pDst,
|
---|
3628 | uint32_t blockSize);
|
---|
3629 |
|
---|
3630 |
|
---|
3631 | /**
|
---|
3632 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
|
---|
3633 | * @param[in] S points to an instance of the filter data structure.
|
---|
3634 | * @param[in] pSrc points to the block of input data.
|
---|
3635 | * @param[out] pDst points to the block of output data
|
---|
3636 | * @param[in] blockSize number of samples to process.
|
---|
3637 | */
|
---|
3638 | void arm_biquad_cascade_stereo_df2T_f32(
|
---|
3639 | const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
|
---|
3640 | float32_t * pSrc,
|
---|
3641 | float32_t * pDst,
|
---|
3642 | uint32_t blockSize);
|
---|
3643 |
|
---|
3644 |
|
---|
3645 | /**
|
---|
3646 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
|
---|
3647 | * @param[in] S points to an instance of the filter data structure.
|
---|
3648 | * @param[in] pSrc points to the block of input data.
|
---|
3649 | * @param[out] pDst points to the block of output data
|
---|
3650 | * @param[in] blockSize number of samples to process.
|
---|
3651 | */
|
---|
3652 | void arm_biquad_cascade_df2T_f64(
|
---|
3653 | const arm_biquad_cascade_df2T_instance_f64 * S,
|
---|
3654 | float64_t * pSrc,
|
---|
3655 | float64_t * pDst,
|
---|
3656 | uint32_t blockSize);
|
---|
3657 |
|
---|
3658 |
|
---|
3659 | /**
|
---|
3660 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
---|
3661 | * @param[in,out] S points to an instance of the filter data structure.
|
---|
3662 | * @param[in] numStages number of 2nd order stages in the filter.
|
---|
3663 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
3664 | * @param[in] pState points to the state buffer.
|
---|
3665 | */
|
---|
3666 | void arm_biquad_cascade_df2T_init_f32(
|
---|
3667 | arm_biquad_cascade_df2T_instance_f32 * S,
|
---|
3668 | uint8_t numStages,
|
---|
3669 | float32_t * pCoeffs,
|
---|
3670 | float32_t * pState);
|
---|
3671 |
|
---|
3672 |
|
---|
3673 | /**
|
---|
3674 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
---|
3675 | * @param[in,out] S points to an instance of the filter data structure.
|
---|
3676 | * @param[in] numStages number of 2nd order stages in the filter.
|
---|
3677 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
3678 | * @param[in] pState points to the state buffer.
|
---|
3679 | */
|
---|
3680 | void arm_biquad_cascade_stereo_df2T_init_f32(
|
---|
3681 | arm_biquad_cascade_stereo_df2T_instance_f32 * S,
|
---|
3682 | uint8_t numStages,
|
---|
3683 | float32_t * pCoeffs,
|
---|
3684 | float32_t * pState);
|
---|
3685 |
|
---|
3686 |
|
---|
3687 | /**
|
---|
3688 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
---|
3689 | * @param[in,out] S points to an instance of the filter data structure.
|
---|
3690 | * @param[in] numStages number of 2nd order stages in the filter.
|
---|
3691 | * @param[in] pCoeffs points to the filter coefficients.
|
---|
3692 | * @param[in] pState points to the state buffer.
|
---|
3693 | */
|
---|
3694 | void arm_biquad_cascade_df2T_init_f64(
|
---|
3695 | arm_biquad_cascade_df2T_instance_f64 * S,
|
---|
3696 | uint8_t numStages,
|
---|
3697 | float64_t * pCoeffs,
|
---|
3698 | float64_t * pState);
|
---|
3699 |
|
---|
3700 |
|
---|
3701 | /**
|
---|
3702 | * @brief Instance structure for the Q15 FIR lattice filter.
|
---|
3703 | */
|
---|
3704 | typedef struct
|
---|
3705 | {
|
---|
3706 | uint16_t numStages; /**< number of filter stages. */
|
---|
3707 | q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
---|
3708 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
---|
3709 | } arm_fir_lattice_instance_q15;
|
---|
3710 |
|
---|
3711 | /**
|
---|
3712 | * @brief Instance structure for the Q31 FIR lattice filter.
|
---|
3713 | */
|
---|
3714 | typedef struct
|
---|
3715 | {
|
---|
3716 | uint16_t numStages; /**< number of filter stages. */
|
---|
3717 | q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
---|
3718 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
---|
3719 | } arm_fir_lattice_instance_q31;
|
---|
3720 |
|
---|
3721 | /**
|
---|
3722 | * @brief Instance structure for the floating-point FIR lattice filter.
|
---|
3723 | */
|
---|
3724 | typedef struct
|
---|
3725 | {
|
---|
3726 | uint16_t numStages; /**< number of filter stages. */
|
---|
3727 | float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
---|
3728 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
---|
3729 | } arm_fir_lattice_instance_f32;
|
---|
3730 |
|
---|
3731 |
|
---|
3732 | /**
|
---|
3733 | * @brief Initialization function for the Q15 FIR lattice filter.
|
---|
3734 | * @param[in] S points to an instance of the Q15 FIR lattice structure.
|
---|
3735 | * @param[in] numStages number of filter stages.
|
---|
3736 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
|
---|
3737 | * @param[in] pState points to the state buffer. The array is of length numStages.
|
---|
3738 | */
|
---|
3739 | void arm_fir_lattice_init_q15(
|
---|
3740 | arm_fir_lattice_instance_q15 * S,
|
---|
3741 | uint16_t numStages,
|
---|
3742 | q15_t * pCoeffs,
|
---|
3743 | q15_t * pState);
|
---|
3744 |
|
---|
3745 |
|
---|
3746 | /**
|
---|
3747 | * @brief Processing function for the Q15 FIR lattice filter.
|
---|
3748 | * @param[in] S points to an instance of the Q15 FIR lattice structure.
|
---|
3749 | * @param[in] pSrc points to the block of input data.
|
---|
3750 | * @param[out] pDst points to the block of output data.
|
---|
3751 | * @param[in] blockSize number of samples to process.
|
---|
3752 | */
|
---|
3753 | void arm_fir_lattice_q15(
|
---|
3754 | const arm_fir_lattice_instance_q15 * S,
|
---|
3755 | q15_t * pSrc,
|
---|
3756 | q15_t * pDst,
|
---|
3757 | uint32_t blockSize);
|
---|
3758 |
|
---|
3759 |
|
---|
3760 | /**
|
---|
3761 | * @brief Initialization function for the Q31 FIR lattice filter.
|
---|
3762 | * @param[in] S points to an instance of the Q31 FIR lattice structure.
|
---|
3763 | * @param[in] numStages number of filter stages.
|
---|
3764 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
|
---|
3765 | * @param[in] pState points to the state buffer. The array is of length numStages.
|
---|
3766 | */
|
---|
3767 | void arm_fir_lattice_init_q31(
|
---|
3768 | arm_fir_lattice_instance_q31 * S,
|
---|
3769 | uint16_t numStages,
|
---|
3770 | q31_t * pCoeffs,
|
---|
3771 | q31_t * pState);
|
---|
3772 |
|
---|
3773 |
|
---|
3774 | /**
|
---|
3775 | * @brief Processing function for the Q31 FIR lattice filter.
|
---|
3776 | * @param[in] S points to an instance of the Q31 FIR lattice structure.
|
---|
3777 | * @param[in] pSrc points to the block of input data.
|
---|
3778 | * @param[out] pDst points to the block of output data
|
---|
3779 | * @param[in] blockSize number of samples to process.
|
---|
3780 | */
|
---|
3781 | void arm_fir_lattice_q31(
|
---|
3782 | const arm_fir_lattice_instance_q31 * S,
|
---|
3783 | q31_t * pSrc,
|
---|
3784 | q31_t * pDst,
|
---|
3785 | uint32_t blockSize);
|
---|
3786 |
|
---|
3787 |
|
---|
3788 | /**
|
---|
3789 | * @brief Initialization function for the floating-point FIR lattice filter.
|
---|
3790 | * @param[in] S points to an instance of the floating-point FIR lattice structure.
|
---|
3791 | * @param[in] numStages number of filter stages.
|
---|
3792 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
|
---|
3793 | * @param[in] pState points to the state buffer. The array is of length numStages.
|
---|
3794 | */
|
---|
3795 | void arm_fir_lattice_init_f32(
|
---|
3796 | arm_fir_lattice_instance_f32 * S,
|
---|
3797 | uint16_t numStages,
|
---|
3798 | float32_t * pCoeffs,
|
---|
3799 | float32_t * pState);
|
---|
3800 |
|
---|
3801 |
|
---|
3802 | /**
|
---|
3803 | * @brief Processing function for the floating-point FIR lattice filter.
|
---|
3804 | * @param[in] S points to an instance of the floating-point FIR lattice structure.
|
---|
3805 | * @param[in] pSrc points to the block of input data.
|
---|
3806 | * @param[out] pDst points to the block of output data
|
---|
3807 | * @param[in] blockSize number of samples to process.
|
---|
3808 | */
|
---|
3809 | void arm_fir_lattice_f32(
|
---|
3810 | const arm_fir_lattice_instance_f32 * S,
|
---|
3811 | float32_t * pSrc,
|
---|
3812 | float32_t * pDst,
|
---|
3813 | uint32_t blockSize);
|
---|
3814 |
|
---|
3815 |
|
---|
3816 | /**
|
---|
3817 | * @brief Instance structure for the Q15 IIR lattice filter.
|
---|
3818 | */
|
---|
3819 | typedef struct
|
---|
3820 | {
|
---|
3821 | uint16_t numStages; /**< number of stages in the filter. */
|
---|
3822 | q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
---|
3823 | q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
---|
3824 | q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
---|
3825 | } arm_iir_lattice_instance_q15;
|
---|
3826 |
|
---|
3827 | /**
|
---|
3828 | * @brief Instance structure for the Q31 IIR lattice filter.
|
---|
3829 | */
|
---|
3830 | typedef struct
|
---|
3831 | {
|
---|
3832 | uint16_t numStages; /**< number of stages in the filter. */
|
---|
3833 | q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
---|
3834 | q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
---|
3835 | q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
---|
3836 | } arm_iir_lattice_instance_q31;
|
---|
3837 |
|
---|
3838 | /**
|
---|
3839 | * @brief Instance structure for the floating-point IIR lattice filter.
|
---|
3840 | */
|
---|
3841 | typedef struct
|
---|
3842 | {
|
---|
3843 | uint16_t numStages; /**< number of stages in the filter. */
|
---|
3844 | float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
---|
3845 | float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
---|
3846 | float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
---|
3847 | } arm_iir_lattice_instance_f32;
|
---|
3848 |
|
---|
3849 |
|
---|
3850 | /**
|
---|
3851 | * @brief Processing function for the floating-point IIR lattice filter.
|
---|
3852 | * @param[in] S points to an instance of the floating-point IIR lattice structure.
|
---|
3853 | * @param[in] pSrc points to the block of input data.
|
---|
3854 | * @param[out] pDst points to the block of output data.
|
---|
3855 | * @param[in] blockSize number of samples to process.
|
---|
3856 | */
|
---|
3857 | void arm_iir_lattice_f32(
|
---|
3858 | const arm_iir_lattice_instance_f32 * S,
|
---|
3859 | float32_t * pSrc,
|
---|
3860 | float32_t * pDst,
|
---|
3861 | uint32_t blockSize);
|
---|
3862 |
|
---|
3863 |
|
---|
3864 | /**
|
---|
3865 | * @brief Initialization function for the floating-point IIR lattice filter.
|
---|
3866 | * @param[in] S points to an instance of the floating-point IIR lattice structure.
|
---|
3867 | * @param[in] numStages number of stages in the filter.
|
---|
3868 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
|
---|
3869 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
|
---|
3870 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
|
---|
3871 | * @param[in] blockSize number of samples to process.
|
---|
3872 | */
|
---|
3873 | void arm_iir_lattice_init_f32(
|
---|
3874 | arm_iir_lattice_instance_f32 * S,
|
---|
3875 | uint16_t numStages,
|
---|
3876 | float32_t * pkCoeffs,
|
---|
3877 | float32_t * pvCoeffs,
|
---|
3878 | float32_t * pState,
|
---|
3879 | uint32_t blockSize);
|
---|
3880 |
|
---|
3881 |
|
---|
3882 | /**
|
---|
3883 | * @brief Processing function for the Q31 IIR lattice filter.
|
---|
3884 | * @param[in] S points to an instance of the Q31 IIR lattice structure.
|
---|
3885 | * @param[in] pSrc points to the block of input data.
|
---|
3886 | * @param[out] pDst points to the block of output data.
|
---|
3887 | * @param[in] blockSize number of samples to process.
|
---|
3888 | */
|
---|
3889 | void arm_iir_lattice_q31(
|
---|
3890 | const arm_iir_lattice_instance_q31 * S,
|
---|
3891 | q31_t * pSrc,
|
---|
3892 | q31_t * pDst,
|
---|
3893 | uint32_t blockSize);
|
---|
3894 |
|
---|
3895 |
|
---|
3896 | /**
|
---|
3897 | * @brief Initialization function for the Q31 IIR lattice filter.
|
---|
3898 | * @param[in] S points to an instance of the Q31 IIR lattice structure.
|
---|
3899 | * @param[in] numStages number of stages in the filter.
|
---|
3900 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
|
---|
3901 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
|
---|
3902 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
|
---|
3903 | * @param[in] blockSize number of samples to process.
|
---|
3904 | */
|
---|
3905 | void arm_iir_lattice_init_q31(
|
---|
3906 | arm_iir_lattice_instance_q31 * S,
|
---|
3907 | uint16_t numStages,
|
---|
3908 | q31_t * pkCoeffs,
|
---|
3909 | q31_t * pvCoeffs,
|
---|
3910 | q31_t * pState,
|
---|
3911 | uint32_t blockSize);
|
---|
3912 |
|
---|
3913 |
|
---|
3914 | /**
|
---|
3915 | * @brief Processing function for the Q15 IIR lattice filter.
|
---|
3916 | * @param[in] S points to an instance of the Q15 IIR lattice structure.
|
---|
3917 | * @param[in] pSrc points to the block of input data.
|
---|
3918 | * @param[out] pDst points to the block of output data.
|
---|
3919 | * @param[in] blockSize number of samples to process.
|
---|
3920 | */
|
---|
3921 | void arm_iir_lattice_q15(
|
---|
3922 | const arm_iir_lattice_instance_q15 * S,
|
---|
3923 | q15_t * pSrc,
|
---|
3924 | q15_t * pDst,
|
---|
3925 | uint32_t blockSize);
|
---|
3926 |
|
---|
3927 |
|
---|
3928 | /**
|
---|
3929 | * @brief Initialization function for the Q15 IIR lattice filter.
|
---|
3930 | * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
|
---|
3931 | * @param[in] numStages number of stages in the filter.
|
---|
3932 | * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
|
---|
3933 | * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
|
---|
3934 | * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
|
---|
3935 | * @param[in] blockSize number of samples to process per call.
|
---|
3936 | */
|
---|
3937 | void arm_iir_lattice_init_q15(
|
---|
3938 | arm_iir_lattice_instance_q15 * S,
|
---|
3939 | uint16_t numStages,
|
---|
3940 | q15_t * pkCoeffs,
|
---|
3941 | q15_t * pvCoeffs,
|
---|
3942 | q15_t * pState,
|
---|
3943 | uint32_t blockSize);
|
---|
3944 |
|
---|
3945 |
|
---|
3946 | /**
|
---|
3947 | * @brief Instance structure for the floating-point LMS filter.
|
---|
3948 | */
|
---|
3949 | typedef struct
|
---|
3950 | {
|
---|
3951 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
3952 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
3953 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
---|
3954 | float32_t mu; /**< step size that controls filter coefficient updates. */
|
---|
3955 | } arm_lms_instance_f32;
|
---|
3956 |
|
---|
3957 |
|
---|
3958 | /**
|
---|
3959 | * @brief Processing function for floating-point LMS filter.
|
---|
3960 | * @param[in] S points to an instance of the floating-point LMS filter structure.
|
---|
3961 | * @param[in] pSrc points to the block of input data.
|
---|
3962 | * @param[in] pRef points to the block of reference data.
|
---|
3963 | * @param[out] pOut points to the block of output data.
|
---|
3964 | * @param[out] pErr points to the block of error data.
|
---|
3965 | * @param[in] blockSize number of samples to process.
|
---|
3966 | */
|
---|
3967 | void arm_lms_f32(
|
---|
3968 | const arm_lms_instance_f32 * S,
|
---|
3969 | float32_t * pSrc,
|
---|
3970 | float32_t * pRef,
|
---|
3971 | float32_t * pOut,
|
---|
3972 | float32_t * pErr,
|
---|
3973 | uint32_t blockSize);
|
---|
3974 |
|
---|
3975 |
|
---|
3976 | /**
|
---|
3977 | * @brief Initialization function for floating-point LMS filter.
|
---|
3978 | * @param[in] S points to an instance of the floating-point LMS filter structure.
|
---|
3979 | * @param[in] numTaps number of filter coefficients.
|
---|
3980 | * @param[in] pCoeffs points to the coefficient buffer.
|
---|
3981 | * @param[in] pState points to state buffer.
|
---|
3982 | * @param[in] mu step size that controls filter coefficient updates.
|
---|
3983 | * @param[in] blockSize number of samples to process.
|
---|
3984 | */
|
---|
3985 | void arm_lms_init_f32(
|
---|
3986 | arm_lms_instance_f32 * S,
|
---|
3987 | uint16_t numTaps,
|
---|
3988 | float32_t * pCoeffs,
|
---|
3989 | float32_t * pState,
|
---|
3990 | float32_t mu,
|
---|
3991 | uint32_t blockSize);
|
---|
3992 |
|
---|
3993 |
|
---|
3994 | /**
|
---|
3995 | * @brief Instance structure for the Q15 LMS filter.
|
---|
3996 | */
|
---|
3997 | typedef struct
|
---|
3998 | {
|
---|
3999 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
4000 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
4001 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
---|
4002 | q15_t mu; /**< step size that controls filter coefficient updates. */
|
---|
4003 | uint32_t postShift; /**< bit shift applied to coefficients. */
|
---|
4004 | } arm_lms_instance_q15;
|
---|
4005 |
|
---|
4006 |
|
---|
4007 | /**
|
---|
4008 | * @brief Initialization function for the Q15 LMS filter.
|
---|
4009 | * @param[in] S points to an instance of the Q15 LMS filter structure.
|
---|
4010 | * @param[in] numTaps number of filter coefficients.
|
---|
4011 | * @param[in] pCoeffs points to the coefficient buffer.
|
---|
4012 | * @param[in] pState points to the state buffer.
|
---|
4013 | * @param[in] mu step size that controls filter coefficient updates.
|
---|
4014 | * @param[in] blockSize number of samples to process.
|
---|
4015 | * @param[in] postShift bit shift applied to coefficients.
|
---|
4016 | */
|
---|
4017 | void arm_lms_init_q15(
|
---|
4018 | arm_lms_instance_q15 * S,
|
---|
4019 | uint16_t numTaps,
|
---|
4020 | q15_t * pCoeffs,
|
---|
4021 | q15_t * pState,
|
---|
4022 | q15_t mu,
|
---|
4023 | uint32_t blockSize,
|
---|
4024 | uint32_t postShift);
|
---|
4025 |
|
---|
4026 |
|
---|
4027 | /**
|
---|
4028 | * @brief Processing function for Q15 LMS filter.
|
---|
4029 | * @param[in] S points to an instance of the Q15 LMS filter structure.
|
---|
4030 | * @param[in] pSrc points to the block of input data.
|
---|
4031 | * @param[in] pRef points to the block of reference data.
|
---|
4032 | * @param[out] pOut points to the block of output data.
|
---|
4033 | * @param[out] pErr points to the block of error data.
|
---|
4034 | * @param[in] blockSize number of samples to process.
|
---|
4035 | */
|
---|
4036 | void arm_lms_q15(
|
---|
4037 | const arm_lms_instance_q15 * S,
|
---|
4038 | q15_t * pSrc,
|
---|
4039 | q15_t * pRef,
|
---|
4040 | q15_t * pOut,
|
---|
4041 | q15_t * pErr,
|
---|
4042 | uint32_t blockSize);
|
---|
4043 |
|
---|
4044 |
|
---|
4045 | /**
|
---|
4046 | * @brief Instance structure for the Q31 LMS filter.
|
---|
4047 | */
|
---|
4048 | typedef struct
|
---|
4049 | {
|
---|
4050 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
4051 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
4052 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
---|
4053 | q31_t mu; /**< step size that controls filter coefficient updates. */
|
---|
4054 | uint32_t postShift; /**< bit shift applied to coefficients. */
|
---|
4055 | } arm_lms_instance_q31;
|
---|
4056 |
|
---|
4057 |
|
---|
4058 | /**
|
---|
4059 | * @brief Processing function for Q31 LMS filter.
|
---|
4060 | * @param[in] S points to an instance of the Q15 LMS filter structure.
|
---|
4061 | * @param[in] pSrc points to the block of input data.
|
---|
4062 | * @param[in] pRef points to the block of reference data.
|
---|
4063 | * @param[out] pOut points to the block of output data.
|
---|
4064 | * @param[out] pErr points to the block of error data.
|
---|
4065 | * @param[in] blockSize number of samples to process.
|
---|
4066 | */
|
---|
4067 | void arm_lms_q31(
|
---|
4068 | const arm_lms_instance_q31 * S,
|
---|
4069 | q31_t * pSrc,
|
---|
4070 | q31_t * pRef,
|
---|
4071 | q31_t * pOut,
|
---|
4072 | q31_t * pErr,
|
---|
4073 | uint32_t blockSize);
|
---|
4074 |
|
---|
4075 |
|
---|
4076 | /**
|
---|
4077 | * @brief Initialization function for Q31 LMS filter.
|
---|
4078 | * @param[in] S points to an instance of the Q31 LMS filter structure.
|
---|
4079 | * @param[in] numTaps number of filter coefficients.
|
---|
4080 | * @param[in] pCoeffs points to coefficient buffer.
|
---|
4081 | * @param[in] pState points to state buffer.
|
---|
4082 | * @param[in] mu step size that controls filter coefficient updates.
|
---|
4083 | * @param[in] blockSize number of samples to process.
|
---|
4084 | * @param[in] postShift bit shift applied to coefficients.
|
---|
4085 | */
|
---|
4086 | void arm_lms_init_q31(
|
---|
4087 | arm_lms_instance_q31 * S,
|
---|
4088 | uint16_t numTaps,
|
---|
4089 | q31_t * pCoeffs,
|
---|
4090 | q31_t * pState,
|
---|
4091 | q31_t mu,
|
---|
4092 | uint32_t blockSize,
|
---|
4093 | uint32_t postShift);
|
---|
4094 |
|
---|
4095 |
|
---|
4096 | /**
|
---|
4097 | * @brief Instance structure for the floating-point normalized LMS filter.
|
---|
4098 | */
|
---|
4099 | typedef struct
|
---|
4100 | {
|
---|
4101 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
4102 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
4103 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
---|
4104 | float32_t mu; /**< step size that control filter coefficient updates. */
|
---|
4105 | float32_t energy; /**< saves previous frame energy. */
|
---|
4106 | float32_t x0; /**< saves previous input sample. */
|
---|
4107 | } arm_lms_norm_instance_f32;
|
---|
4108 |
|
---|
4109 |
|
---|
4110 | /**
|
---|
4111 | * @brief Processing function for floating-point normalized LMS filter.
|
---|
4112 | * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
|
---|
4113 | * @param[in] pSrc points to the block of input data.
|
---|
4114 | * @param[in] pRef points to the block of reference data.
|
---|
4115 | * @param[out] pOut points to the block of output data.
|
---|
4116 | * @param[out] pErr points to the block of error data.
|
---|
4117 | * @param[in] blockSize number of samples to process.
|
---|
4118 | */
|
---|
4119 | void arm_lms_norm_f32(
|
---|
4120 | arm_lms_norm_instance_f32 * S,
|
---|
4121 | float32_t * pSrc,
|
---|
4122 | float32_t * pRef,
|
---|
4123 | float32_t * pOut,
|
---|
4124 | float32_t * pErr,
|
---|
4125 | uint32_t blockSize);
|
---|
4126 |
|
---|
4127 |
|
---|
4128 | /**
|
---|
4129 | * @brief Initialization function for floating-point normalized LMS filter.
|
---|
4130 | * @param[in] S points to an instance of the floating-point LMS filter structure.
|
---|
4131 | * @param[in] numTaps number of filter coefficients.
|
---|
4132 | * @param[in] pCoeffs points to coefficient buffer.
|
---|
4133 | * @param[in] pState points to state buffer.
|
---|
4134 | * @param[in] mu step size that controls filter coefficient updates.
|
---|
4135 | * @param[in] blockSize number of samples to process.
|
---|
4136 | */
|
---|
4137 | void arm_lms_norm_init_f32(
|
---|
4138 | arm_lms_norm_instance_f32 * S,
|
---|
4139 | uint16_t numTaps,
|
---|
4140 | float32_t * pCoeffs,
|
---|
4141 | float32_t * pState,
|
---|
4142 | float32_t mu,
|
---|
4143 | uint32_t blockSize);
|
---|
4144 |
|
---|
4145 |
|
---|
4146 | /**
|
---|
4147 | * @brief Instance structure for the Q31 normalized LMS filter.
|
---|
4148 | */
|
---|
4149 | typedef struct
|
---|
4150 | {
|
---|
4151 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
4152 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
4153 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
---|
4154 | q31_t mu; /**< step size that controls filter coefficient updates. */
|
---|
4155 | uint8_t postShift; /**< bit shift applied to coefficients. */
|
---|
4156 | q31_t *recipTable; /**< points to the reciprocal initial value table. */
|
---|
4157 | q31_t energy; /**< saves previous frame energy. */
|
---|
4158 | q31_t x0; /**< saves previous input sample. */
|
---|
4159 | } arm_lms_norm_instance_q31;
|
---|
4160 |
|
---|
4161 |
|
---|
4162 | /**
|
---|
4163 | * @brief Processing function for Q31 normalized LMS filter.
|
---|
4164 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
|
---|
4165 | * @param[in] pSrc points to the block of input data.
|
---|
4166 | * @param[in] pRef points to the block of reference data.
|
---|
4167 | * @param[out] pOut points to the block of output data.
|
---|
4168 | * @param[out] pErr points to the block of error data.
|
---|
4169 | * @param[in] blockSize number of samples to process.
|
---|
4170 | */
|
---|
4171 | void arm_lms_norm_q31(
|
---|
4172 | arm_lms_norm_instance_q31 * S,
|
---|
4173 | q31_t * pSrc,
|
---|
4174 | q31_t * pRef,
|
---|
4175 | q31_t * pOut,
|
---|
4176 | q31_t * pErr,
|
---|
4177 | uint32_t blockSize);
|
---|
4178 |
|
---|
4179 |
|
---|
4180 | /**
|
---|
4181 | * @brief Initialization function for Q31 normalized LMS filter.
|
---|
4182 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
|
---|
4183 | * @param[in] numTaps number of filter coefficients.
|
---|
4184 | * @param[in] pCoeffs points to coefficient buffer.
|
---|
4185 | * @param[in] pState points to state buffer.
|
---|
4186 | * @param[in] mu step size that controls filter coefficient updates.
|
---|
4187 | * @param[in] blockSize number of samples to process.
|
---|
4188 | * @param[in] postShift bit shift applied to coefficients.
|
---|
4189 | */
|
---|
4190 | void arm_lms_norm_init_q31(
|
---|
4191 | arm_lms_norm_instance_q31 * S,
|
---|
4192 | uint16_t numTaps,
|
---|
4193 | q31_t * pCoeffs,
|
---|
4194 | q31_t * pState,
|
---|
4195 | q31_t mu,
|
---|
4196 | uint32_t blockSize,
|
---|
4197 | uint8_t postShift);
|
---|
4198 |
|
---|
4199 |
|
---|
4200 | /**
|
---|
4201 | * @brief Instance structure for the Q15 normalized LMS filter.
|
---|
4202 | */
|
---|
4203 | typedef struct
|
---|
4204 | {
|
---|
4205 | uint16_t numTaps; /**< Number of coefficients in the filter. */
|
---|
4206 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
---|
4207 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
---|
4208 | q15_t mu; /**< step size that controls filter coefficient updates. */
|
---|
4209 | uint8_t postShift; /**< bit shift applied to coefficients. */
|
---|
4210 | q15_t *recipTable; /**< Points to the reciprocal initial value table. */
|
---|
4211 | q15_t energy; /**< saves previous frame energy. */
|
---|
4212 | q15_t x0; /**< saves previous input sample. */
|
---|
4213 | } arm_lms_norm_instance_q15;
|
---|
4214 |
|
---|
4215 |
|
---|
4216 | /**
|
---|
4217 | * @brief Processing function for Q15 normalized LMS filter.
|
---|
4218 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
|
---|
4219 | * @param[in] pSrc points to the block of input data.
|
---|
4220 | * @param[in] pRef points to the block of reference data.
|
---|
4221 | * @param[out] pOut points to the block of output data.
|
---|
4222 | * @param[out] pErr points to the block of error data.
|
---|
4223 | * @param[in] blockSize number of samples to process.
|
---|
4224 | */
|
---|
4225 | void arm_lms_norm_q15(
|
---|
4226 | arm_lms_norm_instance_q15 * S,
|
---|
4227 | q15_t * pSrc,
|
---|
4228 | q15_t * pRef,
|
---|
4229 | q15_t * pOut,
|
---|
4230 | q15_t * pErr,
|
---|
4231 | uint32_t blockSize);
|
---|
4232 |
|
---|
4233 |
|
---|
4234 | /**
|
---|
4235 | * @brief Initialization function for Q15 normalized LMS filter.
|
---|
4236 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
|
---|
4237 | * @param[in] numTaps number of filter coefficients.
|
---|
4238 | * @param[in] pCoeffs points to coefficient buffer.
|
---|
4239 | * @param[in] pState points to state buffer.
|
---|
4240 | * @param[in] mu step size that controls filter coefficient updates.
|
---|
4241 | * @param[in] blockSize number of samples to process.
|
---|
4242 | * @param[in] postShift bit shift applied to coefficients.
|
---|
4243 | */
|
---|
4244 | void arm_lms_norm_init_q15(
|
---|
4245 | arm_lms_norm_instance_q15 * S,
|
---|
4246 | uint16_t numTaps,
|
---|
4247 | q15_t * pCoeffs,
|
---|
4248 | q15_t * pState,
|
---|
4249 | q15_t mu,
|
---|
4250 | uint32_t blockSize,
|
---|
4251 | uint8_t postShift);
|
---|
4252 |
|
---|
4253 |
|
---|
4254 | /**
|
---|
4255 | * @brief Correlation of floating-point sequences.
|
---|
4256 | * @param[in] pSrcA points to the first input sequence.
|
---|
4257 | * @param[in] srcALen length of the first input sequence.
|
---|
4258 | * @param[in] pSrcB points to the second input sequence.
|
---|
4259 | * @param[in] srcBLen length of the second input sequence.
|
---|
4260 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4261 | */
|
---|
4262 | void arm_correlate_f32(
|
---|
4263 | float32_t * pSrcA,
|
---|
4264 | uint32_t srcALen,
|
---|
4265 | float32_t * pSrcB,
|
---|
4266 | uint32_t srcBLen,
|
---|
4267 | float32_t * pDst);
|
---|
4268 |
|
---|
4269 |
|
---|
4270 | /**
|
---|
4271 | * @brief Correlation of Q15 sequences
|
---|
4272 | * @param[in] pSrcA points to the first input sequence.
|
---|
4273 | * @param[in] srcALen length of the first input sequence.
|
---|
4274 | * @param[in] pSrcB points to the second input sequence.
|
---|
4275 | * @param[in] srcBLen length of the second input sequence.
|
---|
4276 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4277 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
4278 | */
|
---|
4279 | void arm_correlate_opt_q15(
|
---|
4280 | q15_t * pSrcA,
|
---|
4281 | uint32_t srcALen,
|
---|
4282 | q15_t * pSrcB,
|
---|
4283 | uint32_t srcBLen,
|
---|
4284 | q15_t * pDst,
|
---|
4285 | q15_t * pScratch);
|
---|
4286 |
|
---|
4287 |
|
---|
4288 | /**
|
---|
4289 | * @brief Correlation of Q15 sequences.
|
---|
4290 | * @param[in] pSrcA points to the first input sequence.
|
---|
4291 | * @param[in] srcALen length of the first input sequence.
|
---|
4292 | * @param[in] pSrcB points to the second input sequence.
|
---|
4293 | * @param[in] srcBLen length of the second input sequence.
|
---|
4294 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4295 | */
|
---|
4296 |
|
---|
4297 | void arm_correlate_q15(
|
---|
4298 | q15_t * pSrcA,
|
---|
4299 | uint32_t srcALen,
|
---|
4300 | q15_t * pSrcB,
|
---|
4301 | uint32_t srcBLen,
|
---|
4302 | q15_t * pDst);
|
---|
4303 |
|
---|
4304 |
|
---|
4305 | /**
|
---|
4306 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
|
---|
4307 | * @param[in] pSrcA points to the first input sequence.
|
---|
4308 | * @param[in] srcALen length of the first input sequence.
|
---|
4309 | * @param[in] pSrcB points to the second input sequence.
|
---|
4310 | * @param[in] srcBLen length of the second input sequence.
|
---|
4311 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4312 | */
|
---|
4313 |
|
---|
4314 | void arm_correlate_fast_q15(
|
---|
4315 | q15_t * pSrcA,
|
---|
4316 | uint32_t srcALen,
|
---|
4317 | q15_t * pSrcB,
|
---|
4318 | uint32_t srcBLen,
|
---|
4319 | q15_t * pDst);
|
---|
4320 |
|
---|
4321 |
|
---|
4322 | /**
|
---|
4323 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
|
---|
4324 | * @param[in] pSrcA points to the first input sequence.
|
---|
4325 | * @param[in] srcALen length of the first input sequence.
|
---|
4326 | * @param[in] pSrcB points to the second input sequence.
|
---|
4327 | * @param[in] srcBLen length of the second input sequence.
|
---|
4328 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4329 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
4330 | */
|
---|
4331 | void arm_correlate_fast_opt_q15(
|
---|
4332 | q15_t * pSrcA,
|
---|
4333 | uint32_t srcALen,
|
---|
4334 | q15_t * pSrcB,
|
---|
4335 | uint32_t srcBLen,
|
---|
4336 | q15_t * pDst,
|
---|
4337 | q15_t * pScratch);
|
---|
4338 |
|
---|
4339 |
|
---|
4340 | /**
|
---|
4341 | * @brief Correlation of Q31 sequences.
|
---|
4342 | * @param[in] pSrcA points to the first input sequence.
|
---|
4343 | * @param[in] srcALen length of the first input sequence.
|
---|
4344 | * @param[in] pSrcB points to the second input sequence.
|
---|
4345 | * @param[in] srcBLen length of the second input sequence.
|
---|
4346 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4347 | */
|
---|
4348 | void arm_correlate_q31(
|
---|
4349 | q31_t * pSrcA,
|
---|
4350 | uint32_t srcALen,
|
---|
4351 | q31_t * pSrcB,
|
---|
4352 | uint32_t srcBLen,
|
---|
4353 | q31_t * pDst);
|
---|
4354 |
|
---|
4355 |
|
---|
4356 | /**
|
---|
4357 | * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
|
---|
4358 | * @param[in] pSrcA points to the first input sequence.
|
---|
4359 | * @param[in] srcALen length of the first input sequence.
|
---|
4360 | * @param[in] pSrcB points to the second input sequence.
|
---|
4361 | * @param[in] srcBLen length of the second input sequence.
|
---|
4362 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4363 | */
|
---|
4364 | void arm_correlate_fast_q31(
|
---|
4365 | q31_t * pSrcA,
|
---|
4366 | uint32_t srcALen,
|
---|
4367 | q31_t * pSrcB,
|
---|
4368 | uint32_t srcBLen,
|
---|
4369 | q31_t * pDst);
|
---|
4370 |
|
---|
4371 |
|
---|
4372 | /**
|
---|
4373 | * @brief Correlation of Q7 sequences.
|
---|
4374 | * @param[in] pSrcA points to the first input sequence.
|
---|
4375 | * @param[in] srcALen length of the first input sequence.
|
---|
4376 | * @param[in] pSrcB points to the second input sequence.
|
---|
4377 | * @param[in] srcBLen length of the second input sequence.
|
---|
4378 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4379 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
---|
4380 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
|
---|
4381 | */
|
---|
4382 | void arm_correlate_opt_q7(
|
---|
4383 | q7_t * pSrcA,
|
---|
4384 | uint32_t srcALen,
|
---|
4385 | q7_t * pSrcB,
|
---|
4386 | uint32_t srcBLen,
|
---|
4387 | q7_t * pDst,
|
---|
4388 | q15_t * pScratch1,
|
---|
4389 | q15_t * pScratch2);
|
---|
4390 |
|
---|
4391 |
|
---|
4392 | /**
|
---|
4393 | * @brief Correlation of Q7 sequences.
|
---|
4394 | * @param[in] pSrcA points to the first input sequence.
|
---|
4395 | * @param[in] srcALen length of the first input sequence.
|
---|
4396 | * @param[in] pSrcB points to the second input sequence.
|
---|
4397 | * @param[in] srcBLen length of the second input sequence.
|
---|
4398 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
---|
4399 | */
|
---|
4400 | void arm_correlate_q7(
|
---|
4401 | q7_t * pSrcA,
|
---|
4402 | uint32_t srcALen,
|
---|
4403 | q7_t * pSrcB,
|
---|
4404 | uint32_t srcBLen,
|
---|
4405 | q7_t * pDst);
|
---|
4406 |
|
---|
4407 |
|
---|
4408 | /**
|
---|
4409 | * @brief Instance structure for the floating-point sparse FIR filter.
|
---|
4410 | */
|
---|
4411 | typedef struct
|
---|
4412 | {
|
---|
4413 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
4414 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
---|
4415 | float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
---|
4416 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
4417 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
---|
4418 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
---|
4419 | } arm_fir_sparse_instance_f32;
|
---|
4420 |
|
---|
4421 | /**
|
---|
4422 | * @brief Instance structure for the Q31 sparse FIR filter.
|
---|
4423 | */
|
---|
4424 | typedef struct
|
---|
4425 | {
|
---|
4426 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
4427 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
---|
4428 | q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
---|
4429 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
4430 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
---|
4431 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
---|
4432 | } arm_fir_sparse_instance_q31;
|
---|
4433 |
|
---|
4434 | /**
|
---|
4435 | * @brief Instance structure for the Q15 sparse FIR filter.
|
---|
4436 | */
|
---|
4437 | typedef struct
|
---|
4438 | {
|
---|
4439 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
4440 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
---|
4441 | q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
---|
4442 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
4443 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
---|
4444 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
---|
4445 | } arm_fir_sparse_instance_q15;
|
---|
4446 |
|
---|
4447 | /**
|
---|
4448 | * @brief Instance structure for the Q7 sparse FIR filter.
|
---|
4449 | */
|
---|
4450 | typedef struct
|
---|
4451 | {
|
---|
4452 | uint16_t numTaps; /**< number of coefficients in the filter. */
|
---|
4453 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
---|
4454 | q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
---|
4455 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
---|
4456 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
---|
4457 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
---|
4458 | } arm_fir_sparse_instance_q7;
|
---|
4459 |
|
---|
4460 |
|
---|
4461 | /**
|
---|
4462 | * @brief Processing function for the floating-point sparse FIR filter.
|
---|
4463 | * @param[in] S points to an instance of the floating-point sparse FIR structure.
|
---|
4464 | * @param[in] pSrc points to the block of input data.
|
---|
4465 | * @param[out] pDst points to the block of output data
|
---|
4466 | * @param[in] pScratchIn points to a temporary buffer of size blockSize.
|
---|
4467 | * @param[in] blockSize number of input samples to process per call.
|
---|
4468 | */
|
---|
4469 | void arm_fir_sparse_f32(
|
---|
4470 | arm_fir_sparse_instance_f32 * S,
|
---|
4471 | float32_t * pSrc,
|
---|
4472 | float32_t * pDst,
|
---|
4473 | float32_t * pScratchIn,
|
---|
4474 | uint32_t blockSize);
|
---|
4475 |
|
---|
4476 |
|
---|
4477 | /**
|
---|
4478 | * @brief Initialization function for the floating-point sparse FIR filter.
|
---|
4479 | * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
|
---|
4480 | * @param[in] numTaps number of nonzero coefficients in the filter.
|
---|
4481 | * @param[in] pCoeffs points to the array of filter coefficients.
|
---|
4482 | * @param[in] pState points to the state buffer.
|
---|
4483 | * @param[in] pTapDelay points to the array of offset times.
|
---|
4484 | * @param[in] maxDelay maximum offset time supported.
|
---|
4485 | * @param[in] blockSize number of samples that will be processed per block.
|
---|
4486 | */
|
---|
4487 | void arm_fir_sparse_init_f32(
|
---|
4488 | arm_fir_sparse_instance_f32 * S,
|
---|
4489 | uint16_t numTaps,
|
---|
4490 | float32_t * pCoeffs,
|
---|
4491 | float32_t * pState,
|
---|
4492 | int32_t * pTapDelay,
|
---|
4493 | uint16_t maxDelay,
|
---|
4494 | uint32_t blockSize);
|
---|
4495 |
|
---|
4496 |
|
---|
4497 | /**
|
---|
4498 | * @brief Processing function for the Q31 sparse FIR filter.
|
---|
4499 | * @param[in] S points to an instance of the Q31 sparse FIR structure.
|
---|
4500 | * @param[in] pSrc points to the block of input data.
|
---|
4501 | * @param[out] pDst points to the block of output data
|
---|
4502 | * @param[in] pScratchIn points to a temporary buffer of size blockSize.
|
---|
4503 | * @param[in] blockSize number of input samples to process per call.
|
---|
4504 | */
|
---|
4505 | void arm_fir_sparse_q31(
|
---|
4506 | arm_fir_sparse_instance_q31 * S,
|
---|
4507 | q31_t * pSrc,
|
---|
4508 | q31_t * pDst,
|
---|
4509 | q31_t * pScratchIn,
|
---|
4510 | uint32_t blockSize);
|
---|
4511 |
|
---|
4512 |
|
---|
4513 | /**
|
---|
4514 | * @brief Initialization function for the Q31 sparse FIR filter.
|
---|
4515 | * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
|
---|
4516 | * @param[in] numTaps number of nonzero coefficients in the filter.
|
---|
4517 | * @param[in] pCoeffs points to the array of filter coefficients.
|
---|
4518 | * @param[in] pState points to the state buffer.
|
---|
4519 | * @param[in] pTapDelay points to the array of offset times.
|
---|
4520 | * @param[in] maxDelay maximum offset time supported.
|
---|
4521 | * @param[in] blockSize number of samples that will be processed per block.
|
---|
4522 | */
|
---|
4523 | void arm_fir_sparse_init_q31(
|
---|
4524 | arm_fir_sparse_instance_q31 * S,
|
---|
4525 | uint16_t numTaps,
|
---|
4526 | q31_t * pCoeffs,
|
---|
4527 | q31_t * pState,
|
---|
4528 | int32_t * pTapDelay,
|
---|
4529 | uint16_t maxDelay,
|
---|
4530 | uint32_t blockSize);
|
---|
4531 |
|
---|
4532 |
|
---|
4533 | /**
|
---|
4534 | * @brief Processing function for the Q15 sparse FIR filter.
|
---|
4535 | * @param[in] S points to an instance of the Q15 sparse FIR structure.
|
---|
4536 | * @param[in] pSrc points to the block of input data.
|
---|
4537 | * @param[out] pDst points to the block of output data
|
---|
4538 | * @param[in] pScratchIn points to a temporary buffer of size blockSize.
|
---|
4539 | * @param[in] pScratchOut points to a temporary buffer of size blockSize.
|
---|
4540 | * @param[in] blockSize number of input samples to process per call.
|
---|
4541 | */
|
---|
4542 | void arm_fir_sparse_q15(
|
---|
4543 | arm_fir_sparse_instance_q15 * S,
|
---|
4544 | q15_t * pSrc,
|
---|
4545 | q15_t * pDst,
|
---|
4546 | q15_t * pScratchIn,
|
---|
4547 | q31_t * pScratchOut,
|
---|
4548 | uint32_t blockSize);
|
---|
4549 |
|
---|
4550 |
|
---|
4551 | /**
|
---|
4552 | * @brief Initialization function for the Q15 sparse FIR filter.
|
---|
4553 | * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
|
---|
4554 | * @param[in] numTaps number of nonzero coefficients in the filter.
|
---|
4555 | * @param[in] pCoeffs points to the array of filter coefficients.
|
---|
4556 | * @param[in] pState points to the state buffer.
|
---|
4557 | * @param[in] pTapDelay points to the array of offset times.
|
---|
4558 | * @param[in] maxDelay maximum offset time supported.
|
---|
4559 | * @param[in] blockSize number of samples that will be processed per block.
|
---|
4560 | */
|
---|
4561 | void arm_fir_sparse_init_q15(
|
---|
4562 | arm_fir_sparse_instance_q15 * S,
|
---|
4563 | uint16_t numTaps,
|
---|
4564 | q15_t * pCoeffs,
|
---|
4565 | q15_t * pState,
|
---|
4566 | int32_t * pTapDelay,
|
---|
4567 | uint16_t maxDelay,
|
---|
4568 | uint32_t blockSize);
|
---|
4569 |
|
---|
4570 |
|
---|
4571 | /**
|
---|
4572 | * @brief Processing function for the Q7 sparse FIR filter.
|
---|
4573 | * @param[in] S points to an instance of the Q7 sparse FIR structure.
|
---|
4574 | * @param[in] pSrc points to the block of input data.
|
---|
4575 | * @param[out] pDst points to the block of output data
|
---|
4576 | * @param[in] pScratchIn points to a temporary buffer of size blockSize.
|
---|
4577 | * @param[in] pScratchOut points to a temporary buffer of size blockSize.
|
---|
4578 | * @param[in] blockSize number of input samples to process per call.
|
---|
4579 | */
|
---|
4580 | void arm_fir_sparse_q7(
|
---|
4581 | arm_fir_sparse_instance_q7 * S,
|
---|
4582 | q7_t * pSrc,
|
---|
4583 | q7_t * pDst,
|
---|
4584 | q7_t * pScratchIn,
|
---|
4585 | q31_t * pScratchOut,
|
---|
4586 | uint32_t blockSize);
|
---|
4587 |
|
---|
4588 |
|
---|
4589 | /**
|
---|
4590 | * @brief Initialization function for the Q7 sparse FIR filter.
|
---|
4591 | * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
|
---|
4592 | * @param[in] numTaps number of nonzero coefficients in the filter.
|
---|
4593 | * @param[in] pCoeffs points to the array of filter coefficients.
|
---|
4594 | * @param[in] pState points to the state buffer.
|
---|
4595 | * @param[in] pTapDelay points to the array of offset times.
|
---|
4596 | * @param[in] maxDelay maximum offset time supported.
|
---|
4597 | * @param[in] blockSize number of samples that will be processed per block.
|
---|
4598 | */
|
---|
4599 | void arm_fir_sparse_init_q7(
|
---|
4600 | arm_fir_sparse_instance_q7 * S,
|
---|
4601 | uint16_t numTaps,
|
---|
4602 | q7_t * pCoeffs,
|
---|
4603 | q7_t * pState,
|
---|
4604 | int32_t * pTapDelay,
|
---|
4605 | uint16_t maxDelay,
|
---|
4606 | uint32_t blockSize);
|
---|
4607 |
|
---|
4608 |
|
---|
4609 | /**
|
---|
4610 | * @brief Floating-point sin_cos function.
|
---|
4611 | * @param[in] theta input value in degrees
|
---|
4612 | * @param[out] pSinVal points to the processed sine output.
|
---|
4613 | * @param[out] pCosVal points to the processed cos output.
|
---|
4614 | */
|
---|
4615 | void arm_sin_cos_f32(
|
---|
4616 | float32_t theta,
|
---|
4617 | float32_t * pSinVal,
|
---|
4618 | float32_t * pCosVal);
|
---|
4619 |
|
---|
4620 |
|
---|
4621 | /**
|
---|
4622 | * @brief Q31 sin_cos function.
|
---|
4623 | * @param[in] theta scaled input value in degrees
|
---|
4624 | * @param[out] pSinVal points to the processed sine output.
|
---|
4625 | * @param[out] pCosVal points to the processed cosine output.
|
---|
4626 | */
|
---|
4627 | void arm_sin_cos_q31(
|
---|
4628 | q31_t theta,
|
---|
4629 | q31_t * pSinVal,
|
---|
4630 | q31_t * pCosVal);
|
---|
4631 |
|
---|
4632 |
|
---|
4633 | /**
|
---|
4634 | * @brief Floating-point complex conjugate.
|
---|
4635 | * @param[in] pSrc points to the input vector
|
---|
4636 | * @param[out] pDst points to the output vector
|
---|
4637 | * @param[in] numSamples number of complex samples in each vector
|
---|
4638 | */
|
---|
4639 | void arm_cmplx_conj_f32(
|
---|
4640 | float32_t * pSrc,
|
---|
4641 | float32_t * pDst,
|
---|
4642 | uint32_t numSamples);
|
---|
4643 |
|
---|
4644 | /**
|
---|
4645 | * @brief Q31 complex conjugate.
|
---|
4646 | * @param[in] pSrc points to the input vector
|
---|
4647 | * @param[out] pDst points to the output vector
|
---|
4648 | * @param[in] numSamples number of complex samples in each vector
|
---|
4649 | */
|
---|
4650 | void arm_cmplx_conj_q31(
|
---|
4651 | q31_t * pSrc,
|
---|
4652 | q31_t * pDst,
|
---|
4653 | uint32_t numSamples);
|
---|
4654 |
|
---|
4655 |
|
---|
4656 | /**
|
---|
4657 | * @brief Q15 complex conjugate.
|
---|
4658 | * @param[in] pSrc points to the input vector
|
---|
4659 | * @param[out] pDst points to the output vector
|
---|
4660 | * @param[in] numSamples number of complex samples in each vector
|
---|
4661 | */
|
---|
4662 | void arm_cmplx_conj_q15(
|
---|
4663 | q15_t * pSrc,
|
---|
4664 | q15_t * pDst,
|
---|
4665 | uint32_t numSamples);
|
---|
4666 |
|
---|
4667 |
|
---|
4668 | /**
|
---|
4669 | * @brief Floating-point complex magnitude squared
|
---|
4670 | * @param[in] pSrc points to the complex input vector
|
---|
4671 | * @param[out] pDst points to the real output vector
|
---|
4672 | * @param[in] numSamples number of complex samples in the input vector
|
---|
4673 | */
|
---|
4674 | void arm_cmplx_mag_squared_f32(
|
---|
4675 | float32_t * pSrc,
|
---|
4676 | float32_t * pDst,
|
---|
4677 | uint32_t numSamples);
|
---|
4678 |
|
---|
4679 |
|
---|
4680 | /**
|
---|
4681 | * @brief Q31 complex magnitude squared
|
---|
4682 | * @param[in] pSrc points to the complex input vector
|
---|
4683 | * @param[out] pDst points to the real output vector
|
---|
4684 | * @param[in] numSamples number of complex samples in the input vector
|
---|
4685 | */
|
---|
4686 | void arm_cmplx_mag_squared_q31(
|
---|
4687 | q31_t * pSrc,
|
---|
4688 | q31_t * pDst,
|
---|
4689 | uint32_t numSamples);
|
---|
4690 |
|
---|
4691 |
|
---|
4692 | /**
|
---|
4693 | * @brief Q15 complex magnitude squared
|
---|
4694 | * @param[in] pSrc points to the complex input vector
|
---|
4695 | * @param[out] pDst points to the real output vector
|
---|
4696 | * @param[in] numSamples number of complex samples in the input vector
|
---|
4697 | */
|
---|
4698 | void arm_cmplx_mag_squared_q15(
|
---|
4699 | q15_t * pSrc,
|
---|
4700 | q15_t * pDst,
|
---|
4701 | uint32_t numSamples);
|
---|
4702 |
|
---|
4703 |
|
---|
4704 | /**
|
---|
4705 | * @ingroup groupController
|
---|
4706 | */
|
---|
4707 |
|
---|
4708 | /**
|
---|
4709 | * @defgroup PID PID Motor Control
|
---|
4710 | *
|
---|
4711 | * A Proportional Integral Derivative (PID) controller is a generic feedback control
|
---|
4712 | * loop mechanism widely used in industrial control systems.
|
---|
4713 | * A PID controller is the most commonly used type of feedback controller.
|
---|
4714 | *
|
---|
4715 | * This set of functions implements (PID) controllers
|
---|
4716 | * for Q15, Q31, and floating-point data types. The functions operate on a single sample
|
---|
4717 | * of data and each call to the function returns a single processed value.
|
---|
4718 | * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
|
---|
4719 | * is the input sample value. The functions return the output value.
|
---|
4720 | *
|
---|
4721 | * \par Algorithm:
|
---|
4722 | * <pre>
|
---|
4723 | * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
|
---|
4724 | * A0 = Kp + Ki + Kd
|
---|
4725 | * A1 = (-Kp ) - (2 * Kd )
|
---|
4726 | * A2 = Kd </pre>
|
---|
4727 | *
|
---|
4728 | * \par
|
---|
4729 | * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
|
---|
4730 | *
|
---|
4731 | * \par
|
---|
4732 | * \image html PID.gif "Proportional Integral Derivative Controller"
|
---|
4733 | *
|
---|
4734 | * \par
|
---|
4735 | * The PID controller calculates an "error" value as the difference between
|
---|
4736 | * the measured output and the reference input.
|
---|
4737 | * The controller attempts to minimize the error by adjusting the process control inputs.
|
---|
4738 | * The proportional value determines the reaction to the current error,
|
---|
4739 | * the integral value determines the reaction based on the sum of recent errors,
|
---|
4740 | * and the derivative value determines the reaction based on the rate at which the error has been changing.
|
---|
4741 | *
|
---|
4742 | * \par Instance Structure
|
---|
4743 | * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
|
---|
4744 | * A separate instance structure must be defined for each PID Controller.
|
---|
4745 | * There are separate instance structure declarations for each of the 3 supported data types.
|
---|
4746 | *
|
---|
4747 | * \par Reset Functions
|
---|
4748 | * There is also an associated reset function for each data type which clears the state array.
|
---|
4749 | *
|
---|
4750 | * \par Initialization Functions
|
---|
4751 | * There is also an associated initialization function for each data type.
|
---|
4752 | * The initialization function performs the following operations:
|
---|
4753 | * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
|
---|
4754 | * - Zeros out the values in the state buffer.
|
---|
4755 | *
|
---|
4756 | * \par
|
---|
4757 | * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
|
---|
4758 | *
|
---|
4759 | * \par Fixed-Point Behavior
|
---|
4760 | * Care must be taken when using the fixed-point versions of the PID Controller functions.
|
---|
4761 | * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
|
---|
4762 | * Refer to the function specific documentation below for usage guidelines.
|
---|
4763 | */
|
---|
4764 |
|
---|
4765 | /**
|
---|
4766 | * @addtogroup PID
|
---|
4767 | * @{
|
---|
4768 | */
|
---|
4769 |
|
---|
4770 | /**
|
---|
4771 | * @brief Process function for the floating-point PID Control.
|
---|
4772 | * @param[in,out] S is an instance of the floating-point PID Control structure
|
---|
4773 | * @param[in] in input sample to process
|
---|
4774 | * @return out processed output sample.
|
---|
4775 | */
|
---|
4776 | CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32(
|
---|
4777 | arm_pid_instance_f32 * S,
|
---|
4778 | float32_t in)
|
---|
4779 | {
|
---|
4780 | float32_t out;
|
---|
4781 |
|
---|
4782 | /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
|
---|
4783 | out = (S->A0 * in) +
|
---|
4784 | (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
|
---|
4785 |
|
---|
4786 | /* Update state */
|
---|
4787 | S->state[1] = S->state[0];
|
---|
4788 | S->state[0] = in;
|
---|
4789 | S->state[2] = out;
|
---|
4790 |
|
---|
4791 | /* return to application */
|
---|
4792 | return (out);
|
---|
4793 |
|
---|
4794 | }
|
---|
4795 |
|
---|
4796 | /**
|
---|
4797 | * @brief Process function for the Q31 PID Control.
|
---|
4798 | * @param[in,out] S points to an instance of the Q31 PID Control structure
|
---|
4799 | * @param[in] in input sample to process
|
---|
4800 | * @return out processed output sample.
|
---|
4801 | *
|
---|
4802 | * <b>Scaling and Overflow Behavior:</b>
|
---|
4803 | * \par
|
---|
4804 | * The function is implemented using an internal 64-bit accumulator.
|
---|
4805 | * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
---|
4806 | * Thus, if the accumulator result overflows it wraps around rather than clip.
|
---|
4807 | * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
|
---|
4808 | * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
|
---|
4809 | */
|
---|
4810 | CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31(
|
---|
4811 | arm_pid_instance_q31 * S,
|
---|
4812 | q31_t in)
|
---|
4813 | {
|
---|
4814 | q63_t acc;
|
---|
4815 | q31_t out;
|
---|
4816 |
|
---|
4817 | /* acc = A0 * x[n] */
|
---|
4818 | acc = (q63_t) S->A0 * in;
|
---|
4819 |
|
---|
4820 | /* acc += A1 * x[n-1] */
|
---|
4821 | acc += (q63_t) S->A1 * S->state[0];
|
---|
4822 |
|
---|
4823 | /* acc += A2 * x[n-2] */
|
---|
4824 | acc += (q63_t) S->A2 * S->state[1];
|
---|
4825 |
|
---|
4826 | /* convert output to 1.31 format to add y[n-1] */
|
---|
4827 | out = (q31_t) (acc >> 31U);
|
---|
4828 |
|
---|
4829 | /* out += y[n-1] */
|
---|
4830 | out += S->state[2];
|
---|
4831 |
|
---|
4832 | /* Update state */
|
---|
4833 | S->state[1] = S->state[0];
|
---|
4834 | S->state[0] = in;
|
---|
4835 | S->state[2] = out;
|
---|
4836 |
|
---|
4837 | /* return to application */
|
---|
4838 | return (out);
|
---|
4839 | }
|
---|
4840 |
|
---|
4841 |
|
---|
4842 | /**
|
---|
4843 | * @brief Process function for the Q15 PID Control.
|
---|
4844 | * @param[in,out] S points to an instance of the Q15 PID Control structure
|
---|
4845 | * @param[in] in input sample to process
|
---|
4846 | * @return out processed output sample.
|
---|
4847 | *
|
---|
4848 | * <b>Scaling and Overflow Behavior:</b>
|
---|
4849 | * \par
|
---|
4850 | * The function is implemented using a 64-bit internal accumulator.
|
---|
4851 | * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
|
---|
4852 | * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
---|
4853 | * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
|
---|
4854 | * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
|
---|
4855 | * Lastly, the accumulator is saturated to yield a result in 1.15 format.
|
---|
4856 | */
|
---|
4857 | CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15(
|
---|
4858 | arm_pid_instance_q15 * S,
|
---|
4859 | q15_t in)
|
---|
4860 | {
|
---|
4861 | q63_t acc;
|
---|
4862 | q15_t out;
|
---|
4863 |
|
---|
4864 | #if defined (ARM_MATH_DSP)
|
---|
4865 | __SIMD32_TYPE *vstate;
|
---|
4866 |
|
---|
4867 | /* Implementation of PID controller */
|
---|
4868 |
|
---|
4869 | /* acc = A0 * x[n] */
|
---|
4870 | acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
|
---|
4871 |
|
---|
4872 | /* acc += A1 * x[n-1] + A2 * x[n-2] */
|
---|
4873 | vstate = __SIMD32_CONST(S->state);
|
---|
4874 | acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
|
---|
4875 | #else
|
---|
4876 | /* acc = A0 * x[n] */
|
---|
4877 | acc = ((q31_t) S->A0) * in;
|
---|
4878 |
|
---|
4879 | /* acc += A1 * x[n-1] + A2 * x[n-2] */
|
---|
4880 | acc += (q31_t) S->A1 * S->state[0];
|
---|
4881 | acc += (q31_t) S->A2 * S->state[1];
|
---|
4882 | #endif
|
---|
4883 |
|
---|
4884 | /* acc += y[n-1] */
|
---|
4885 | acc += (q31_t) S->state[2] << 15;
|
---|
4886 |
|
---|
4887 | /* saturate the output */
|
---|
4888 | out = (q15_t) (__SSAT((acc >> 15), 16));
|
---|
4889 |
|
---|
4890 | /* Update state */
|
---|
4891 | S->state[1] = S->state[0];
|
---|
4892 | S->state[0] = in;
|
---|
4893 | S->state[2] = out;
|
---|
4894 |
|
---|
4895 | /* return to application */
|
---|
4896 | return (out);
|
---|
4897 | }
|
---|
4898 |
|
---|
4899 | /**
|
---|
4900 | * @} end of PID group
|
---|
4901 | */
|
---|
4902 |
|
---|
4903 |
|
---|
4904 | /**
|
---|
4905 | * @brief Floating-point matrix inverse.
|
---|
4906 | * @param[in] src points to the instance of the input floating-point matrix structure.
|
---|
4907 | * @param[out] dst points to the instance of the output floating-point matrix structure.
|
---|
4908 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
|
---|
4909 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
|
---|
4910 | */
|
---|
4911 | arm_status arm_mat_inverse_f32(
|
---|
4912 | const arm_matrix_instance_f32 * src,
|
---|
4913 | arm_matrix_instance_f32 * dst);
|
---|
4914 |
|
---|
4915 |
|
---|
4916 | /**
|
---|
4917 | * @brief Floating-point matrix inverse.
|
---|
4918 | * @param[in] src points to the instance of the input floating-point matrix structure.
|
---|
4919 | * @param[out] dst points to the instance of the output floating-point matrix structure.
|
---|
4920 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
|
---|
4921 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
|
---|
4922 | */
|
---|
4923 | arm_status arm_mat_inverse_f64(
|
---|
4924 | const arm_matrix_instance_f64 * src,
|
---|
4925 | arm_matrix_instance_f64 * dst);
|
---|
4926 |
|
---|
4927 |
|
---|
4928 |
|
---|
4929 | /**
|
---|
4930 | * @ingroup groupController
|
---|
4931 | */
|
---|
4932 |
|
---|
4933 | /**
|
---|
4934 | * @defgroup clarke Vector Clarke Transform
|
---|
4935 | * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
|
---|
4936 | * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
|
---|
4937 | * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
|
---|
4938 | * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
|
---|
4939 | * \image html clarke.gif Stator current space vector and its components in (a,b).
|
---|
4940 | * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
|
---|
4941 | * can be calculated using only <code>Ia</code> and <code>Ib</code>.
|
---|
4942 | *
|
---|
4943 | * The function operates on a single sample of data and each call to the function returns the processed output.
|
---|
4944 | * The library provides separate functions for Q31 and floating-point data types.
|
---|
4945 | * \par Algorithm
|
---|
4946 | * \image html clarkeFormula.gif
|
---|
4947 | * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
|
---|
4948 | * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
|
---|
4949 | * \par Fixed-Point Behavior
|
---|
4950 | * Care must be taken when using the Q31 version of the Clarke transform.
|
---|
4951 | * In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
---|
4952 | * Refer to the function specific documentation below for usage guidelines.
|
---|
4953 | */
|
---|
4954 |
|
---|
4955 | /**
|
---|
4956 | * @addtogroup clarke
|
---|
4957 | * @{
|
---|
4958 | */
|
---|
4959 |
|
---|
4960 | /**
|
---|
4961 | *
|
---|
4962 | * @brief Floating-point Clarke transform
|
---|
4963 | * @param[in] Ia input three-phase coordinate <code>a</code>
|
---|
4964 | * @param[in] Ib input three-phase coordinate <code>b</code>
|
---|
4965 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
---|
4966 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
---|
4967 | */
|
---|
4968 | CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32(
|
---|
4969 | float32_t Ia,
|
---|
4970 | float32_t Ib,
|
---|
4971 | float32_t * pIalpha,
|
---|
4972 | float32_t * pIbeta)
|
---|
4973 | {
|
---|
4974 | /* Calculate pIalpha using the equation, pIalpha = Ia */
|
---|
4975 | *pIalpha = Ia;
|
---|
4976 |
|
---|
4977 | /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
|
---|
4978 | *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
|
---|
4979 | }
|
---|
4980 |
|
---|
4981 |
|
---|
4982 | /**
|
---|
4983 | * @brief Clarke transform for Q31 version
|
---|
4984 | * @param[in] Ia input three-phase coordinate <code>a</code>
|
---|
4985 | * @param[in] Ib input three-phase coordinate <code>b</code>
|
---|
4986 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
---|
4987 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
---|
4988 | *
|
---|
4989 | * <b>Scaling and Overflow Behavior:</b>
|
---|
4990 | * \par
|
---|
4991 | * The function is implemented using an internal 32-bit accumulator.
|
---|
4992 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
---|
4993 | * There is saturation on the addition, hence there is no risk of overflow.
|
---|
4994 | */
|
---|
4995 | CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31(
|
---|
4996 | q31_t Ia,
|
---|
4997 | q31_t Ib,
|
---|
4998 | q31_t * pIalpha,
|
---|
4999 | q31_t * pIbeta)
|
---|
5000 | {
|
---|
5001 | q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
---|
5002 |
|
---|
5003 | /* Calculating pIalpha from Ia by equation pIalpha = Ia */
|
---|
5004 | *pIalpha = Ia;
|
---|
5005 |
|
---|
5006 | /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
|
---|
5007 | product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
|
---|
5008 |
|
---|
5009 | /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
|
---|
5010 | product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
|
---|
5011 |
|
---|
5012 | /* pIbeta is calculated by adding the intermediate products */
|
---|
5013 | *pIbeta = __QADD(product1, product2);
|
---|
5014 | }
|
---|
5015 |
|
---|
5016 | /**
|
---|
5017 | * @} end of clarke group
|
---|
5018 | */
|
---|
5019 |
|
---|
5020 | /**
|
---|
5021 | * @brief Converts the elements of the Q7 vector to Q31 vector.
|
---|
5022 | * @param[in] pSrc input pointer
|
---|
5023 | * @param[out] pDst output pointer
|
---|
5024 | * @param[in] blockSize number of samples to process
|
---|
5025 | */
|
---|
5026 | void arm_q7_to_q31(
|
---|
5027 | q7_t * pSrc,
|
---|
5028 | q31_t * pDst,
|
---|
5029 | uint32_t blockSize);
|
---|
5030 |
|
---|
5031 |
|
---|
5032 |
|
---|
5033 | /**
|
---|
5034 | * @ingroup groupController
|
---|
5035 | */
|
---|
5036 |
|
---|
5037 | /**
|
---|
5038 | * @defgroup inv_clarke Vector Inverse Clarke Transform
|
---|
5039 | * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
|
---|
5040 | *
|
---|
5041 | * The function operates on a single sample of data and each call to the function returns the processed output.
|
---|
5042 | * The library provides separate functions for Q31 and floating-point data types.
|
---|
5043 | * \par Algorithm
|
---|
5044 | * \image html clarkeInvFormula.gif
|
---|
5045 | * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
|
---|
5046 | * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
|
---|
5047 | * \par Fixed-Point Behavior
|
---|
5048 | * Care must be taken when using the Q31 version of the Clarke transform.
|
---|
5049 | * In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
---|
5050 | * Refer to the function specific documentation below for usage guidelines.
|
---|
5051 | */
|
---|
5052 |
|
---|
5053 | /**
|
---|
5054 | * @addtogroup inv_clarke
|
---|
5055 | * @{
|
---|
5056 | */
|
---|
5057 |
|
---|
5058 | /**
|
---|
5059 | * @brief Floating-point Inverse Clarke transform
|
---|
5060 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha
|
---|
5061 | * @param[in] Ibeta input two-phase orthogonal vector axis beta
|
---|
5062 | * @param[out] pIa points to output three-phase coordinate <code>a</code>
|
---|
5063 | * @param[out] pIb points to output three-phase coordinate <code>b</code>
|
---|
5064 | */
|
---|
5065 | CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32(
|
---|
5066 | float32_t Ialpha,
|
---|
5067 | float32_t Ibeta,
|
---|
5068 | float32_t * pIa,
|
---|
5069 | float32_t * pIb)
|
---|
5070 | {
|
---|
5071 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */
|
---|
5072 | *pIa = Ialpha;
|
---|
5073 |
|
---|
5074 | /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
|
---|
5075 | *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
|
---|
5076 | }
|
---|
5077 |
|
---|
5078 |
|
---|
5079 | /**
|
---|
5080 | * @brief Inverse Clarke transform for Q31 version
|
---|
5081 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha
|
---|
5082 | * @param[in] Ibeta input two-phase orthogonal vector axis beta
|
---|
5083 | * @param[out] pIa points to output three-phase coordinate <code>a</code>
|
---|
5084 | * @param[out] pIb points to output three-phase coordinate <code>b</code>
|
---|
5085 | *
|
---|
5086 | * <b>Scaling and Overflow Behavior:</b>
|
---|
5087 | * \par
|
---|
5088 | * The function is implemented using an internal 32-bit accumulator.
|
---|
5089 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
---|
5090 | * There is saturation on the subtraction, hence there is no risk of overflow.
|
---|
5091 | */
|
---|
5092 | CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31(
|
---|
5093 | q31_t Ialpha,
|
---|
5094 | q31_t Ibeta,
|
---|
5095 | q31_t * pIa,
|
---|
5096 | q31_t * pIb)
|
---|
5097 | {
|
---|
5098 | q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
---|
5099 |
|
---|
5100 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */
|
---|
5101 | *pIa = Ialpha;
|
---|
5102 |
|
---|
5103 | /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
|
---|
5104 | product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
|
---|
5105 |
|
---|
5106 | /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
|
---|
5107 | product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
|
---|
5108 |
|
---|
5109 | /* pIb is calculated by subtracting the products */
|
---|
5110 | *pIb = __QSUB(product2, product1);
|
---|
5111 | }
|
---|
5112 |
|
---|
5113 | /**
|
---|
5114 | * @} end of inv_clarke group
|
---|
5115 | */
|
---|
5116 |
|
---|
5117 | /**
|
---|
5118 | * @brief Converts the elements of the Q7 vector to Q15 vector.
|
---|
5119 | * @param[in] pSrc input pointer
|
---|
5120 | * @param[out] pDst output pointer
|
---|
5121 | * @param[in] blockSize number of samples to process
|
---|
5122 | */
|
---|
5123 | void arm_q7_to_q15(
|
---|
5124 | q7_t * pSrc,
|
---|
5125 | q15_t * pDst,
|
---|
5126 | uint32_t blockSize);
|
---|
5127 |
|
---|
5128 |
|
---|
5129 |
|
---|
5130 | /**
|
---|
5131 | * @ingroup groupController
|
---|
5132 | */
|
---|
5133 |
|
---|
5134 | /**
|
---|
5135 | * @defgroup park Vector Park Transform
|
---|
5136 | *
|
---|
5137 | * Forward Park transform converts the input two-coordinate vector to flux and torque components.
|
---|
5138 | * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
|
---|
5139 | * from the stationary to the moving reference frame and control the spatial relationship between
|
---|
5140 | * the stator vector current and rotor flux vector.
|
---|
5141 | * If we consider the d axis aligned with the rotor flux, the diagram below shows the
|
---|
5142 | * current vector and the relationship from the two reference frames:
|
---|
5143 | * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
|
---|
5144 | *
|
---|
5145 | * The function operates on a single sample of data and each call to the function returns the processed output.
|
---|
5146 | * The library provides separate functions for Q31 and floating-point data types.
|
---|
5147 | * \par Algorithm
|
---|
5148 | * \image html parkFormula.gif
|
---|
5149 | * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
|
---|
5150 | * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
|
---|
5151 | * cosine and sine values of theta (rotor flux position).
|
---|
5152 | * \par Fixed-Point Behavior
|
---|
5153 | * Care must be taken when using the Q31 version of the Park transform.
|
---|
5154 | * In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
---|
5155 | * Refer to the function specific documentation below for usage guidelines.
|
---|
5156 | */
|
---|
5157 |
|
---|
5158 | /**
|
---|
5159 | * @addtogroup park
|
---|
5160 | * @{
|
---|
5161 | */
|
---|
5162 |
|
---|
5163 | /**
|
---|
5164 | * @brief Floating-point Park transform
|
---|
5165 | * @param[in] Ialpha input two-phase vector coordinate alpha
|
---|
5166 | * @param[in] Ibeta input two-phase vector coordinate beta
|
---|
5167 | * @param[out] pId points to output rotor reference frame d
|
---|
5168 | * @param[out] pIq points to output rotor reference frame q
|
---|
5169 | * @param[in] sinVal sine value of rotation angle theta
|
---|
5170 | * @param[in] cosVal cosine value of rotation angle theta
|
---|
5171 | *
|
---|
5172 | * The function implements the forward Park transform.
|
---|
5173 | *
|
---|
5174 | */
|
---|
5175 | CMSIS_INLINE __STATIC_INLINE void arm_park_f32(
|
---|
5176 | float32_t Ialpha,
|
---|
5177 | float32_t Ibeta,
|
---|
5178 | float32_t * pId,
|
---|
5179 | float32_t * pIq,
|
---|
5180 | float32_t sinVal,
|
---|
5181 | float32_t cosVal)
|
---|
5182 | {
|
---|
5183 | /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
|
---|
5184 | *pId = Ialpha * cosVal + Ibeta * sinVal;
|
---|
5185 |
|
---|
5186 | /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
|
---|
5187 | *pIq = -Ialpha * sinVal + Ibeta * cosVal;
|
---|
5188 | }
|
---|
5189 |
|
---|
5190 |
|
---|
5191 | /**
|
---|
5192 | * @brief Park transform for Q31 version
|
---|
5193 | * @param[in] Ialpha input two-phase vector coordinate alpha
|
---|
5194 | * @param[in] Ibeta input two-phase vector coordinate beta
|
---|
5195 | * @param[out] pId points to output rotor reference frame d
|
---|
5196 | * @param[out] pIq points to output rotor reference frame q
|
---|
5197 | * @param[in] sinVal sine value of rotation angle theta
|
---|
5198 | * @param[in] cosVal cosine value of rotation angle theta
|
---|
5199 | *
|
---|
5200 | * <b>Scaling and Overflow Behavior:</b>
|
---|
5201 | * \par
|
---|
5202 | * The function is implemented using an internal 32-bit accumulator.
|
---|
5203 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
---|
5204 | * There is saturation on the addition and subtraction, hence there is no risk of overflow.
|
---|
5205 | */
|
---|
5206 | CMSIS_INLINE __STATIC_INLINE void arm_park_q31(
|
---|
5207 | q31_t Ialpha,
|
---|
5208 | q31_t Ibeta,
|
---|
5209 | q31_t * pId,
|
---|
5210 | q31_t * pIq,
|
---|
5211 | q31_t sinVal,
|
---|
5212 | q31_t cosVal)
|
---|
5213 | {
|
---|
5214 | q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
---|
5215 | q31_t product3, product4; /* Temporary variables used to store intermediate results */
|
---|
5216 |
|
---|
5217 | /* Intermediate product is calculated by (Ialpha * cosVal) */
|
---|
5218 | product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
|
---|
5219 |
|
---|
5220 | /* Intermediate product is calculated by (Ibeta * sinVal) */
|
---|
5221 | product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
|
---|
5222 |
|
---|
5223 |
|
---|
5224 | /* Intermediate product is calculated by (Ialpha * sinVal) */
|
---|
5225 | product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
|
---|
5226 |
|
---|
5227 | /* Intermediate product is calculated by (Ibeta * cosVal) */
|
---|
5228 | product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
|
---|
5229 |
|
---|
5230 | /* Calculate pId by adding the two intermediate products 1 and 2 */
|
---|
5231 | *pId = __QADD(product1, product2);
|
---|
5232 |
|
---|
5233 | /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
|
---|
5234 | *pIq = __QSUB(product4, product3);
|
---|
5235 | }
|
---|
5236 |
|
---|
5237 | /**
|
---|
5238 | * @} end of park group
|
---|
5239 | */
|
---|
5240 |
|
---|
5241 | /**
|
---|
5242 | * @brief Converts the elements of the Q7 vector to floating-point vector.
|
---|
5243 | * @param[in] pSrc is input pointer
|
---|
5244 | * @param[out] pDst is output pointer
|
---|
5245 | * @param[in] blockSize is the number of samples to process
|
---|
5246 | */
|
---|
5247 | void arm_q7_to_float(
|
---|
5248 | q7_t * pSrc,
|
---|
5249 | float32_t * pDst,
|
---|
5250 | uint32_t blockSize);
|
---|
5251 |
|
---|
5252 |
|
---|
5253 | /**
|
---|
5254 | * @ingroup groupController
|
---|
5255 | */
|
---|
5256 |
|
---|
5257 | /**
|
---|
5258 | * @defgroup inv_park Vector Inverse Park transform
|
---|
5259 | * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
|
---|
5260 | *
|
---|
5261 | * The function operates on a single sample of data and each call to the function returns the processed output.
|
---|
5262 | * The library provides separate functions for Q31 and floating-point data types.
|
---|
5263 | * \par Algorithm
|
---|
5264 | * \image html parkInvFormula.gif
|
---|
5265 | * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
|
---|
5266 | * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
|
---|
5267 | * cosine and sine values of theta (rotor flux position).
|
---|
5268 | * \par Fixed-Point Behavior
|
---|
5269 | * Care must be taken when using the Q31 version of the Park transform.
|
---|
5270 | * In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
---|
5271 | * Refer to the function specific documentation below for usage guidelines.
|
---|
5272 | */
|
---|
5273 |
|
---|
5274 | /**
|
---|
5275 | * @addtogroup inv_park
|
---|
5276 | * @{
|
---|
5277 | */
|
---|
5278 |
|
---|
5279 | /**
|
---|
5280 | * @brief Floating-point Inverse Park transform
|
---|
5281 | * @param[in] Id input coordinate of rotor reference frame d
|
---|
5282 | * @param[in] Iq input coordinate of rotor reference frame q
|
---|
5283 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
---|
5284 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
---|
5285 | * @param[in] sinVal sine value of rotation angle theta
|
---|
5286 | * @param[in] cosVal cosine value of rotation angle theta
|
---|
5287 | */
|
---|
5288 | CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32(
|
---|
5289 | float32_t Id,
|
---|
5290 | float32_t Iq,
|
---|
5291 | float32_t * pIalpha,
|
---|
5292 | float32_t * pIbeta,
|
---|
5293 | float32_t sinVal,
|
---|
5294 | float32_t cosVal)
|
---|
5295 | {
|
---|
5296 | /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
|
---|
5297 | *pIalpha = Id * cosVal - Iq * sinVal;
|
---|
5298 |
|
---|
5299 | /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
|
---|
5300 | *pIbeta = Id * sinVal + Iq * cosVal;
|
---|
5301 | }
|
---|
5302 |
|
---|
5303 |
|
---|
5304 | /**
|
---|
5305 | * @brief Inverse Park transform for Q31 version
|
---|
5306 | * @param[in] Id input coordinate of rotor reference frame d
|
---|
5307 | * @param[in] Iq input coordinate of rotor reference frame q
|
---|
5308 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
---|
5309 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
---|
5310 | * @param[in] sinVal sine value of rotation angle theta
|
---|
5311 | * @param[in] cosVal cosine value of rotation angle theta
|
---|
5312 | *
|
---|
5313 | * <b>Scaling and Overflow Behavior:</b>
|
---|
5314 | * \par
|
---|
5315 | * The function is implemented using an internal 32-bit accumulator.
|
---|
5316 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
---|
5317 | * There is saturation on the addition, hence there is no risk of overflow.
|
---|
5318 | */
|
---|
5319 | CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31(
|
---|
5320 | q31_t Id,
|
---|
5321 | q31_t Iq,
|
---|
5322 | q31_t * pIalpha,
|
---|
5323 | q31_t * pIbeta,
|
---|
5324 | q31_t sinVal,
|
---|
5325 | q31_t cosVal)
|
---|
5326 | {
|
---|
5327 | q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
---|
5328 | q31_t product3, product4; /* Temporary variables used to store intermediate results */
|
---|
5329 |
|
---|
5330 | /* Intermediate product is calculated by (Id * cosVal) */
|
---|
5331 | product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
|
---|
5332 |
|
---|
5333 | /* Intermediate product is calculated by (Iq * sinVal) */
|
---|
5334 | product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
|
---|
5335 |
|
---|
5336 |
|
---|
5337 | /* Intermediate product is calculated by (Id * sinVal) */
|
---|
5338 | product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
|
---|
5339 |
|
---|
5340 | /* Intermediate product is calculated by (Iq * cosVal) */
|
---|
5341 | product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
|
---|
5342 |
|
---|
5343 | /* Calculate pIalpha by using the two intermediate products 1 and 2 */
|
---|
5344 | *pIalpha = __QSUB(product1, product2);
|
---|
5345 |
|
---|
5346 | /* Calculate pIbeta by using the two intermediate products 3 and 4 */
|
---|
5347 | *pIbeta = __QADD(product4, product3);
|
---|
5348 | }
|
---|
5349 |
|
---|
5350 | /**
|
---|
5351 | * @} end of Inverse park group
|
---|
5352 | */
|
---|
5353 |
|
---|
5354 |
|
---|
5355 | /**
|
---|
5356 | * @brief Converts the elements of the Q31 vector to floating-point vector.
|
---|
5357 | * @param[in] pSrc is input pointer
|
---|
5358 | * @param[out] pDst is output pointer
|
---|
5359 | * @param[in] blockSize is the number of samples to process
|
---|
5360 | */
|
---|
5361 | void arm_q31_to_float(
|
---|
5362 | q31_t * pSrc,
|
---|
5363 | float32_t * pDst,
|
---|
5364 | uint32_t blockSize);
|
---|
5365 |
|
---|
5366 | /**
|
---|
5367 | * @ingroup groupInterpolation
|
---|
5368 | */
|
---|
5369 |
|
---|
5370 | /**
|
---|
5371 | * @defgroup LinearInterpolate Linear Interpolation
|
---|
5372 | *
|
---|
5373 | * Linear interpolation is a method of curve fitting using linear polynomials.
|
---|
5374 | * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
|
---|
5375 | *
|
---|
5376 | * \par
|
---|
5377 | * \image html LinearInterp.gif "Linear interpolation"
|
---|
5378 | *
|
---|
5379 | * \par
|
---|
5380 | * A Linear Interpolate function calculates an output value(y), for the input(x)
|
---|
5381 | * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
|
---|
5382 | *
|
---|
5383 | * \par Algorithm:
|
---|
5384 | * <pre>
|
---|
5385 | * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
|
---|
5386 | * where x0, x1 are nearest values of input x
|
---|
5387 | * y0, y1 are nearest values to output y
|
---|
5388 | * </pre>
|
---|
5389 | *
|
---|
5390 | * \par
|
---|
5391 | * This set of functions implements Linear interpolation process
|
---|
5392 | * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
|
---|
5393 | * sample of data and each call to the function returns a single processed value.
|
---|
5394 | * <code>S</code> points to an instance of the Linear Interpolate function data structure.
|
---|
5395 | * <code>x</code> is the input sample value. The functions returns the output value.
|
---|
5396 | *
|
---|
5397 | * \par
|
---|
5398 | * if x is outside of the table boundary, Linear interpolation returns first value of the table
|
---|
5399 | * if x is below input range and returns last value of table if x is above range.
|
---|
5400 | */
|
---|
5401 |
|
---|
5402 | /**
|
---|
5403 | * @addtogroup LinearInterpolate
|
---|
5404 | * @{
|
---|
5405 | */
|
---|
5406 |
|
---|
5407 | /**
|
---|
5408 | * @brief Process function for the floating-point Linear Interpolation Function.
|
---|
5409 | * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
|
---|
5410 | * @param[in] x input sample to process
|
---|
5411 | * @return y processed output sample.
|
---|
5412 | *
|
---|
5413 | */
|
---|
5414 | CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32(
|
---|
5415 | arm_linear_interp_instance_f32 * S,
|
---|
5416 | float32_t x)
|
---|
5417 | {
|
---|
5418 | float32_t y;
|
---|
5419 | float32_t x0, x1; /* Nearest input values */
|
---|
5420 | float32_t y0, y1; /* Nearest output values */
|
---|
5421 | float32_t xSpacing = S->xSpacing; /* spacing between input values */
|
---|
5422 | int32_t i; /* Index variable */
|
---|
5423 | float32_t *pYData = S->pYData; /* pointer to output table */
|
---|
5424 |
|
---|
5425 | /* Calculation of index */
|
---|
5426 | i = (int32_t) ((x - S->x1) / xSpacing);
|
---|
5427 |
|
---|
5428 | if (i < 0)
|
---|
5429 | {
|
---|
5430 | /* Iniatilize output for below specified range as least output value of table */
|
---|
5431 | y = pYData[0];
|
---|
5432 | }
|
---|
5433 | else if ((uint32_t)i >= S->nValues)
|
---|
5434 | {
|
---|
5435 | /* Iniatilize output for above specified range as last output value of table */
|
---|
5436 | y = pYData[S->nValues - 1];
|
---|
5437 | }
|
---|
5438 | else
|
---|
5439 | {
|
---|
5440 | /* Calculation of nearest input values */
|
---|
5441 | x0 = S->x1 + i * xSpacing;
|
---|
5442 | x1 = S->x1 + (i + 1) * xSpacing;
|
---|
5443 |
|
---|
5444 | /* Read of nearest output values */
|
---|
5445 | y0 = pYData[i];
|
---|
5446 | y1 = pYData[i + 1];
|
---|
5447 |
|
---|
5448 | /* Calculation of output */
|
---|
5449 | y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
|
---|
5450 |
|
---|
5451 | }
|
---|
5452 |
|
---|
5453 | /* returns output value */
|
---|
5454 | return (y);
|
---|
5455 | }
|
---|
5456 |
|
---|
5457 |
|
---|
5458 | /**
|
---|
5459 | *
|
---|
5460 | * @brief Process function for the Q31 Linear Interpolation Function.
|
---|
5461 | * @param[in] pYData pointer to Q31 Linear Interpolation table
|
---|
5462 | * @param[in] x input sample to process
|
---|
5463 | * @param[in] nValues number of table values
|
---|
5464 | * @return y processed output sample.
|
---|
5465 | *
|
---|
5466 | * \par
|
---|
5467 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
---|
5468 | * This function can support maximum of table size 2^12.
|
---|
5469 | *
|
---|
5470 | */
|
---|
5471 | CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31(
|
---|
5472 | q31_t * pYData,
|
---|
5473 | q31_t x,
|
---|
5474 | uint32_t nValues)
|
---|
5475 | {
|
---|
5476 | q31_t y; /* output */
|
---|
5477 | q31_t y0, y1; /* Nearest output values */
|
---|
5478 | q31_t fract; /* fractional part */
|
---|
5479 | int32_t index; /* Index to read nearest output values */
|
---|
5480 |
|
---|
5481 | /* Input is in 12.20 format */
|
---|
5482 | /* 12 bits for the table index */
|
---|
5483 | /* Index value calculation */
|
---|
5484 | index = ((x & (q31_t)0xFFF00000) >> 20);
|
---|
5485 |
|
---|
5486 | if (index >= (int32_t)(nValues - 1))
|
---|
5487 | {
|
---|
5488 | return (pYData[nValues - 1]);
|
---|
5489 | }
|
---|
5490 | else if (index < 0)
|
---|
5491 | {
|
---|
5492 | return (pYData[0]);
|
---|
5493 | }
|
---|
5494 | else
|
---|
5495 | {
|
---|
5496 | /* 20 bits for the fractional part */
|
---|
5497 | /* shift left by 11 to keep fract in 1.31 format */
|
---|
5498 | fract = (x & 0x000FFFFF) << 11;
|
---|
5499 |
|
---|
5500 | /* Read two nearest output values from the index in 1.31(q31) format */
|
---|
5501 | y0 = pYData[index];
|
---|
5502 | y1 = pYData[index + 1];
|
---|
5503 |
|
---|
5504 | /* Calculation of y0 * (1-fract) and y is in 2.30 format */
|
---|
5505 | y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
|
---|
5506 |
|
---|
5507 | /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
|
---|
5508 | y += ((q31_t) (((q63_t) y1 * fract) >> 32));
|
---|
5509 |
|
---|
5510 | /* Convert y to 1.31 format */
|
---|
5511 | return (y << 1U);
|
---|
5512 | }
|
---|
5513 | }
|
---|
5514 |
|
---|
5515 |
|
---|
5516 | /**
|
---|
5517 | *
|
---|
5518 | * @brief Process function for the Q15 Linear Interpolation Function.
|
---|
5519 | * @param[in] pYData pointer to Q15 Linear Interpolation table
|
---|
5520 | * @param[in] x input sample to process
|
---|
5521 | * @param[in] nValues number of table values
|
---|
5522 | * @return y processed output sample.
|
---|
5523 | *
|
---|
5524 | * \par
|
---|
5525 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
---|
5526 | * This function can support maximum of table size 2^12.
|
---|
5527 | *
|
---|
5528 | */
|
---|
5529 | CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15(
|
---|
5530 | q15_t * pYData,
|
---|
5531 | q31_t x,
|
---|
5532 | uint32_t nValues)
|
---|
5533 | {
|
---|
5534 | q63_t y; /* output */
|
---|
5535 | q15_t y0, y1; /* Nearest output values */
|
---|
5536 | q31_t fract; /* fractional part */
|
---|
5537 | int32_t index; /* Index to read nearest output values */
|
---|
5538 |
|
---|
5539 | /* Input is in 12.20 format */
|
---|
5540 | /* 12 bits for the table index */
|
---|
5541 | /* Index value calculation */
|
---|
5542 | index = ((x & (int32_t)0xFFF00000) >> 20);
|
---|
5543 |
|
---|
5544 | if (index >= (int32_t)(nValues - 1))
|
---|
5545 | {
|
---|
5546 | return (pYData[nValues - 1]);
|
---|
5547 | }
|
---|
5548 | else if (index < 0)
|
---|
5549 | {
|
---|
5550 | return (pYData[0]);
|
---|
5551 | }
|
---|
5552 | else
|
---|
5553 | {
|
---|
5554 | /* 20 bits for the fractional part */
|
---|
5555 | /* fract is in 12.20 format */
|
---|
5556 | fract = (x & 0x000FFFFF);
|
---|
5557 |
|
---|
5558 | /* Read two nearest output values from the index */
|
---|
5559 | y0 = pYData[index];
|
---|
5560 | y1 = pYData[index + 1];
|
---|
5561 |
|
---|
5562 | /* Calculation of y0 * (1-fract) and y is in 13.35 format */
|
---|
5563 | y = ((q63_t) y0 * (0xFFFFF - fract));
|
---|
5564 |
|
---|
5565 | /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
|
---|
5566 | y += ((q63_t) y1 * (fract));
|
---|
5567 |
|
---|
5568 | /* convert y to 1.15 format */
|
---|
5569 | return (q15_t) (y >> 20);
|
---|
5570 | }
|
---|
5571 | }
|
---|
5572 |
|
---|
5573 |
|
---|
5574 | /**
|
---|
5575 | *
|
---|
5576 | * @brief Process function for the Q7 Linear Interpolation Function.
|
---|
5577 | * @param[in] pYData pointer to Q7 Linear Interpolation table
|
---|
5578 | * @param[in] x input sample to process
|
---|
5579 | * @param[in] nValues number of table values
|
---|
5580 | * @return y processed output sample.
|
---|
5581 | *
|
---|
5582 | * \par
|
---|
5583 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
---|
5584 | * This function can support maximum of table size 2^12.
|
---|
5585 | */
|
---|
5586 | CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7(
|
---|
5587 | q7_t * pYData,
|
---|
5588 | q31_t x,
|
---|
5589 | uint32_t nValues)
|
---|
5590 | {
|
---|
5591 | q31_t y; /* output */
|
---|
5592 | q7_t y0, y1; /* Nearest output values */
|
---|
5593 | q31_t fract; /* fractional part */
|
---|
5594 | uint32_t index; /* Index to read nearest output values */
|
---|
5595 |
|
---|
5596 | /* Input is in 12.20 format */
|
---|
5597 | /* 12 bits for the table index */
|
---|
5598 | /* Index value calculation */
|
---|
5599 | if (x < 0)
|
---|
5600 | {
|
---|
5601 | return (pYData[0]);
|
---|
5602 | }
|
---|
5603 | index = (x >> 20) & 0xfff;
|
---|
5604 |
|
---|
5605 | if (index >= (nValues - 1))
|
---|
5606 | {
|
---|
5607 | return (pYData[nValues - 1]);
|
---|
5608 | }
|
---|
5609 | else
|
---|
5610 | {
|
---|
5611 | /* 20 bits for the fractional part */
|
---|
5612 | /* fract is in 12.20 format */
|
---|
5613 | fract = (x & 0x000FFFFF);
|
---|
5614 |
|
---|
5615 | /* Read two nearest output values from the index and are in 1.7(q7) format */
|
---|
5616 | y0 = pYData[index];
|
---|
5617 | y1 = pYData[index + 1];
|
---|
5618 |
|
---|
5619 | /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
|
---|
5620 | y = ((y0 * (0xFFFFF - fract)));
|
---|
5621 |
|
---|
5622 | /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
|
---|
5623 | y += (y1 * fract);
|
---|
5624 |
|
---|
5625 | /* convert y to 1.7(q7) format */
|
---|
5626 | return (q7_t) (y >> 20);
|
---|
5627 | }
|
---|
5628 | }
|
---|
5629 |
|
---|
5630 | /**
|
---|
5631 | * @} end of LinearInterpolate group
|
---|
5632 | */
|
---|
5633 |
|
---|
5634 | /**
|
---|
5635 | * @brief Fast approximation to the trigonometric sine function for floating-point data.
|
---|
5636 | * @param[in] x input value in radians.
|
---|
5637 | * @return sin(x).
|
---|
5638 | */
|
---|
5639 | float32_t arm_sin_f32(
|
---|
5640 | float32_t x);
|
---|
5641 |
|
---|
5642 |
|
---|
5643 | /**
|
---|
5644 | * @brief Fast approximation to the trigonometric sine function for Q31 data.
|
---|
5645 | * @param[in] x Scaled input value in radians.
|
---|
5646 | * @return sin(x).
|
---|
5647 | */
|
---|
5648 | q31_t arm_sin_q31(
|
---|
5649 | q31_t x);
|
---|
5650 |
|
---|
5651 |
|
---|
5652 | /**
|
---|
5653 | * @brief Fast approximation to the trigonometric sine function for Q15 data.
|
---|
5654 | * @param[in] x Scaled input value in radians.
|
---|
5655 | * @return sin(x).
|
---|
5656 | */
|
---|
5657 | q15_t arm_sin_q15(
|
---|
5658 | q15_t x);
|
---|
5659 |
|
---|
5660 |
|
---|
5661 | /**
|
---|
5662 | * @brief Fast approximation to the trigonometric cosine function for floating-point data.
|
---|
5663 | * @param[in] x input value in radians.
|
---|
5664 | * @return cos(x).
|
---|
5665 | */
|
---|
5666 | float32_t arm_cos_f32(
|
---|
5667 | float32_t x);
|
---|
5668 |
|
---|
5669 |
|
---|
5670 | /**
|
---|
5671 | * @brief Fast approximation to the trigonometric cosine function for Q31 data.
|
---|
5672 | * @param[in] x Scaled input value in radians.
|
---|
5673 | * @return cos(x).
|
---|
5674 | */
|
---|
5675 | q31_t arm_cos_q31(
|
---|
5676 | q31_t x);
|
---|
5677 |
|
---|
5678 |
|
---|
5679 | /**
|
---|
5680 | * @brief Fast approximation to the trigonometric cosine function for Q15 data.
|
---|
5681 | * @param[in] x Scaled input value in radians.
|
---|
5682 | * @return cos(x).
|
---|
5683 | */
|
---|
5684 | q15_t arm_cos_q15(
|
---|
5685 | q15_t x);
|
---|
5686 |
|
---|
5687 |
|
---|
5688 | /**
|
---|
5689 | * @ingroup groupFastMath
|
---|
5690 | */
|
---|
5691 |
|
---|
5692 |
|
---|
5693 | /**
|
---|
5694 | * @defgroup SQRT Square Root
|
---|
5695 | *
|
---|
5696 | * Computes the square root of a number.
|
---|
5697 | * There are separate functions for Q15, Q31, and floating-point data types.
|
---|
5698 | * The square root function is computed using the Newton-Raphson algorithm.
|
---|
5699 | * This is an iterative algorithm of the form:
|
---|
5700 | * <pre>
|
---|
5701 | * x1 = x0 - f(x0)/f'(x0)
|
---|
5702 | * </pre>
|
---|
5703 | * where <code>x1</code> is the current estimate,
|
---|
5704 | * <code>x0</code> is the previous estimate, and
|
---|
5705 | * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
|
---|
5706 | * For the square root function, the algorithm reduces to:
|
---|
5707 | * <pre>
|
---|
5708 | * x0 = in/2 [initial guess]
|
---|
5709 | * x1 = 1/2 * ( x0 + in / x0) [each iteration]
|
---|
5710 | * </pre>
|
---|
5711 | */
|
---|
5712 |
|
---|
5713 |
|
---|
5714 | /**
|
---|
5715 | * @addtogroup SQRT
|
---|
5716 | * @{
|
---|
5717 | */
|
---|
5718 |
|
---|
5719 | /**
|
---|
5720 | * @brief Floating-point square root function.
|
---|
5721 | * @param[in] in input value.
|
---|
5722 | * @param[out] pOut square root of input value.
|
---|
5723 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
|
---|
5724 | * <code>in</code> is negative value and returns zero output for negative values.
|
---|
5725 | */
|
---|
5726 | CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32(
|
---|
5727 | float32_t in,
|
---|
5728 | float32_t * pOut)
|
---|
5729 | {
|
---|
5730 | if (in >= 0.0f)
|
---|
5731 | {
|
---|
5732 |
|
---|
5733 | #if (__FPU_USED == 1) && defined ( __CC_ARM )
|
---|
5734 | *pOut = __sqrtf(in);
|
---|
5735 | #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
|
---|
5736 | *pOut = __builtin_sqrtf(in);
|
---|
5737 | #elif (__FPU_USED == 1) && defined(__GNUC__)
|
---|
5738 | *pOut = __builtin_sqrtf(in);
|
---|
5739 | #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
|
---|
5740 | __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
|
---|
5741 | #else
|
---|
5742 | *pOut = sqrtf(in);
|
---|
5743 | #endif
|
---|
5744 |
|
---|
5745 | return (ARM_MATH_SUCCESS);
|
---|
5746 | }
|
---|
5747 | else
|
---|
5748 | {
|
---|
5749 | *pOut = 0.0f;
|
---|
5750 | return (ARM_MATH_ARGUMENT_ERROR);
|
---|
5751 | }
|
---|
5752 | }
|
---|
5753 |
|
---|
5754 |
|
---|
5755 | /**
|
---|
5756 | * @brief Q31 square root function.
|
---|
5757 | * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
|
---|
5758 | * @param[out] pOut square root of input value.
|
---|
5759 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
|
---|
5760 | * <code>in</code> is negative value and returns zero output for negative values.
|
---|
5761 | */
|
---|
5762 | arm_status arm_sqrt_q31(
|
---|
5763 | q31_t in,
|
---|
5764 | q31_t * pOut);
|
---|
5765 |
|
---|
5766 |
|
---|
5767 | /**
|
---|
5768 | * @brief Q15 square root function.
|
---|
5769 | * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
|
---|
5770 | * @param[out] pOut square root of input value.
|
---|
5771 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
|
---|
5772 | * <code>in</code> is negative value and returns zero output for negative values.
|
---|
5773 | */
|
---|
5774 | arm_status arm_sqrt_q15(
|
---|
5775 | q15_t in,
|
---|
5776 | q15_t * pOut);
|
---|
5777 |
|
---|
5778 | /**
|
---|
5779 | * @} end of SQRT group
|
---|
5780 | */
|
---|
5781 |
|
---|
5782 |
|
---|
5783 | /**
|
---|
5784 | * @brief floating-point Circular write function.
|
---|
5785 | */
|
---|
5786 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32(
|
---|
5787 | int32_t * circBuffer,
|
---|
5788 | int32_t L,
|
---|
5789 | uint16_t * writeOffset,
|
---|
5790 | int32_t bufferInc,
|
---|
5791 | const int32_t * src,
|
---|
5792 | int32_t srcInc,
|
---|
5793 | uint32_t blockSize)
|
---|
5794 | {
|
---|
5795 | uint32_t i = 0U;
|
---|
5796 | int32_t wOffset;
|
---|
5797 |
|
---|
5798 | /* Copy the value of Index pointer that points
|
---|
5799 | * to the current location where the input samples to be copied */
|
---|
5800 | wOffset = *writeOffset;
|
---|
5801 |
|
---|
5802 | /* Loop over the blockSize */
|
---|
5803 | i = blockSize;
|
---|
5804 |
|
---|
5805 | while (i > 0U)
|
---|
5806 | {
|
---|
5807 | /* copy the input sample to the circular buffer */
|
---|
5808 | circBuffer[wOffset] = *src;
|
---|
5809 |
|
---|
5810 | /* Update the input pointer */
|
---|
5811 | src += srcInc;
|
---|
5812 |
|
---|
5813 | /* Circularly update wOffset. Watch out for positive and negative value */
|
---|
5814 | wOffset += bufferInc;
|
---|
5815 | if (wOffset >= L)
|
---|
5816 | wOffset -= L;
|
---|
5817 |
|
---|
5818 | /* Decrement the loop counter */
|
---|
5819 | i--;
|
---|
5820 | }
|
---|
5821 |
|
---|
5822 | /* Update the index pointer */
|
---|
5823 | *writeOffset = (uint16_t)wOffset;
|
---|
5824 | }
|
---|
5825 |
|
---|
5826 |
|
---|
5827 |
|
---|
5828 | /**
|
---|
5829 | * @brief floating-point Circular Read function.
|
---|
5830 | */
|
---|
5831 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32(
|
---|
5832 | int32_t * circBuffer,
|
---|
5833 | int32_t L,
|
---|
5834 | int32_t * readOffset,
|
---|
5835 | int32_t bufferInc,
|
---|
5836 | int32_t * dst,
|
---|
5837 | int32_t * dst_base,
|
---|
5838 | int32_t dst_length,
|
---|
5839 | int32_t dstInc,
|
---|
5840 | uint32_t blockSize)
|
---|
5841 | {
|
---|
5842 | uint32_t i = 0U;
|
---|
5843 | int32_t rOffset, dst_end;
|
---|
5844 |
|
---|
5845 | /* Copy the value of Index pointer that points
|
---|
5846 | * to the current location from where the input samples to be read */
|
---|
5847 | rOffset = *readOffset;
|
---|
5848 | dst_end = (int32_t) (dst_base + dst_length);
|
---|
5849 |
|
---|
5850 | /* Loop over the blockSize */
|
---|
5851 | i = blockSize;
|
---|
5852 |
|
---|
5853 | while (i > 0U)
|
---|
5854 | {
|
---|
5855 | /* copy the sample from the circular buffer to the destination buffer */
|
---|
5856 | *dst = circBuffer[rOffset];
|
---|
5857 |
|
---|
5858 | /* Update the input pointer */
|
---|
5859 | dst += dstInc;
|
---|
5860 |
|
---|
5861 | if (dst == (int32_t *) dst_end)
|
---|
5862 | {
|
---|
5863 | dst = dst_base;
|
---|
5864 | }
|
---|
5865 |
|
---|
5866 | /* Circularly update rOffset. Watch out for positive and negative value */
|
---|
5867 | rOffset += bufferInc;
|
---|
5868 |
|
---|
5869 | if (rOffset >= L)
|
---|
5870 | {
|
---|
5871 | rOffset -= L;
|
---|
5872 | }
|
---|
5873 |
|
---|
5874 | /* Decrement the loop counter */
|
---|
5875 | i--;
|
---|
5876 | }
|
---|
5877 |
|
---|
5878 | /* Update the index pointer */
|
---|
5879 | *readOffset = rOffset;
|
---|
5880 | }
|
---|
5881 |
|
---|
5882 |
|
---|
5883 | /**
|
---|
5884 | * @brief Q15 Circular write function.
|
---|
5885 | */
|
---|
5886 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15(
|
---|
5887 | q15_t * circBuffer,
|
---|
5888 | int32_t L,
|
---|
5889 | uint16_t * writeOffset,
|
---|
5890 | int32_t bufferInc,
|
---|
5891 | const q15_t * src,
|
---|
5892 | int32_t srcInc,
|
---|
5893 | uint32_t blockSize)
|
---|
5894 | {
|
---|
5895 | uint32_t i = 0U;
|
---|
5896 | int32_t wOffset;
|
---|
5897 |
|
---|
5898 | /* Copy the value of Index pointer that points
|
---|
5899 | * to the current location where the input samples to be copied */
|
---|
5900 | wOffset = *writeOffset;
|
---|
5901 |
|
---|
5902 | /* Loop over the blockSize */
|
---|
5903 | i = blockSize;
|
---|
5904 |
|
---|
5905 | while (i > 0U)
|
---|
5906 | {
|
---|
5907 | /* copy the input sample to the circular buffer */
|
---|
5908 | circBuffer[wOffset] = *src;
|
---|
5909 |
|
---|
5910 | /* Update the input pointer */
|
---|
5911 | src += srcInc;
|
---|
5912 |
|
---|
5913 | /* Circularly update wOffset. Watch out for positive and negative value */
|
---|
5914 | wOffset += bufferInc;
|
---|
5915 | if (wOffset >= L)
|
---|
5916 | wOffset -= L;
|
---|
5917 |
|
---|
5918 | /* Decrement the loop counter */
|
---|
5919 | i--;
|
---|
5920 | }
|
---|
5921 |
|
---|
5922 | /* Update the index pointer */
|
---|
5923 | *writeOffset = (uint16_t)wOffset;
|
---|
5924 | }
|
---|
5925 |
|
---|
5926 |
|
---|
5927 | /**
|
---|
5928 | * @brief Q15 Circular Read function.
|
---|
5929 | */
|
---|
5930 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15(
|
---|
5931 | q15_t * circBuffer,
|
---|
5932 | int32_t L,
|
---|
5933 | int32_t * readOffset,
|
---|
5934 | int32_t bufferInc,
|
---|
5935 | q15_t * dst,
|
---|
5936 | q15_t * dst_base,
|
---|
5937 | int32_t dst_length,
|
---|
5938 | int32_t dstInc,
|
---|
5939 | uint32_t blockSize)
|
---|
5940 | {
|
---|
5941 | uint32_t i = 0;
|
---|
5942 | int32_t rOffset, dst_end;
|
---|
5943 |
|
---|
5944 | /* Copy the value of Index pointer that points
|
---|
5945 | * to the current location from where the input samples to be read */
|
---|
5946 | rOffset = *readOffset;
|
---|
5947 |
|
---|
5948 | dst_end = (int32_t) (dst_base + dst_length);
|
---|
5949 |
|
---|
5950 | /* Loop over the blockSize */
|
---|
5951 | i = blockSize;
|
---|
5952 |
|
---|
5953 | while (i > 0U)
|
---|
5954 | {
|
---|
5955 | /* copy the sample from the circular buffer to the destination buffer */
|
---|
5956 | *dst = circBuffer[rOffset];
|
---|
5957 |
|
---|
5958 | /* Update the input pointer */
|
---|
5959 | dst += dstInc;
|
---|
5960 |
|
---|
5961 | if (dst == (q15_t *) dst_end)
|
---|
5962 | {
|
---|
5963 | dst = dst_base;
|
---|
5964 | }
|
---|
5965 |
|
---|
5966 | /* Circularly update wOffset. Watch out for positive and negative value */
|
---|
5967 | rOffset += bufferInc;
|
---|
5968 |
|
---|
5969 | if (rOffset >= L)
|
---|
5970 | {
|
---|
5971 | rOffset -= L;
|
---|
5972 | }
|
---|
5973 |
|
---|
5974 | /* Decrement the loop counter */
|
---|
5975 | i--;
|
---|
5976 | }
|
---|
5977 |
|
---|
5978 | /* Update the index pointer */
|
---|
5979 | *readOffset = rOffset;
|
---|
5980 | }
|
---|
5981 |
|
---|
5982 |
|
---|
5983 | /**
|
---|
5984 | * @brief Q7 Circular write function.
|
---|
5985 | */
|
---|
5986 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7(
|
---|
5987 | q7_t * circBuffer,
|
---|
5988 | int32_t L,
|
---|
5989 | uint16_t * writeOffset,
|
---|
5990 | int32_t bufferInc,
|
---|
5991 | const q7_t * src,
|
---|
5992 | int32_t srcInc,
|
---|
5993 | uint32_t blockSize)
|
---|
5994 | {
|
---|
5995 | uint32_t i = 0U;
|
---|
5996 | int32_t wOffset;
|
---|
5997 |
|
---|
5998 | /* Copy the value of Index pointer that points
|
---|
5999 | * to the current location where the input samples to be copied */
|
---|
6000 | wOffset = *writeOffset;
|
---|
6001 |
|
---|
6002 | /* Loop over the blockSize */
|
---|
6003 | i = blockSize;
|
---|
6004 |
|
---|
6005 | while (i > 0U)
|
---|
6006 | {
|
---|
6007 | /* copy the input sample to the circular buffer */
|
---|
6008 | circBuffer[wOffset] = *src;
|
---|
6009 |
|
---|
6010 | /* Update the input pointer */
|
---|
6011 | src += srcInc;
|
---|
6012 |
|
---|
6013 | /* Circularly update wOffset. Watch out for positive and negative value */
|
---|
6014 | wOffset += bufferInc;
|
---|
6015 | if (wOffset >= L)
|
---|
6016 | wOffset -= L;
|
---|
6017 |
|
---|
6018 | /* Decrement the loop counter */
|
---|
6019 | i--;
|
---|
6020 | }
|
---|
6021 |
|
---|
6022 | /* Update the index pointer */
|
---|
6023 | *writeOffset = (uint16_t)wOffset;
|
---|
6024 | }
|
---|
6025 |
|
---|
6026 |
|
---|
6027 | /**
|
---|
6028 | * @brief Q7 Circular Read function.
|
---|
6029 | */
|
---|
6030 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7(
|
---|
6031 | q7_t * circBuffer,
|
---|
6032 | int32_t L,
|
---|
6033 | int32_t * readOffset,
|
---|
6034 | int32_t bufferInc,
|
---|
6035 | q7_t * dst,
|
---|
6036 | q7_t * dst_base,
|
---|
6037 | int32_t dst_length,
|
---|
6038 | int32_t dstInc,
|
---|
6039 | uint32_t blockSize)
|
---|
6040 | {
|
---|
6041 | uint32_t i = 0;
|
---|
6042 | int32_t rOffset, dst_end;
|
---|
6043 |
|
---|
6044 | /* Copy the value of Index pointer that points
|
---|
6045 | * to the current location from where the input samples to be read */
|
---|
6046 | rOffset = *readOffset;
|
---|
6047 |
|
---|
6048 | dst_end = (int32_t) (dst_base + dst_length);
|
---|
6049 |
|
---|
6050 | /* Loop over the blockSize */
|
---|
6051 | i = blockSize;
|
---|
6052 |
|
---|
6053 | while (i > 0U)
|
---|
6054 | {
|
---|
6055 | /* copy the sample from the circular buffer to the destination buffer */
|
---|
6056 | *dst = circBuffer[rOffset];
|
---|
6057 |
|
---|
6058 | /* Update the input pointer */
|
---|
6059 | dst += dstInc;
|
---|
6060 |
|
---|
6061 | if (dst == (q7_t *) dst_end)
|
---|
6062 | {
|
---|
6063 | dst = dst_base;
|
---|
6064 | }
|
---|
6065 |
|
---|
6066 | /* Circularly update rOffset. Watch out for positive and negative value */
|
---|
6067 | rOffset += bufferInc;
|
---|
6068 |
|
---|
6069 | if (rOffset >= L)
|
---|
6070 | {
|
---|
6071 | rOffset -= L;
|
---|
6072 | }
|
---|
6073 |
|
---|
6074 | /* Decrement the loop counter */
|
---|
6075 | i--;
|
---|
6076 | }
|
---|
6077 |
|
---|
6078 | /* Update the index pointer */
|
---|
6079 | *readOffset = rOffset;
|
---|
6080 | }
|
---|
6081 |
|
---|
6082 |
|
---|
6083 | /**
|
---|
6084 | * @brief Sum of the squares of the elements of a Q31 vector.
|
---|
6085 | * @param[in] pSrc is input pointer
|
---|
6086 | * @param[in] blockSize is the number of samples to process
|
---|
6087 | * @param[out] pResult is output value.
|
---|
6088 | */
|
---|
6089 | void arm_power_q31(
|
---|
6090 | q31_t * pSrc,
|
---|
6091 | uint32_t blockSize,
|
---|
6092 | q63_t * pResult);
|
---|
6093 |
|
---|
6094 |
|
---|
6095 | /**
|
---|
6096 | * @brief Sum of the squares of the elements of a floating-point vector.
|
---|
6097 | * @param[in] pSrc is input pointer
|
---|
6098 | * @param[in] blockSize is the number of samples to process
|
---|
6099 | * @param[out] pResult is output value.
|
---|
6100 | */
|
---|
6101 | void arm_power_f32(
|
---|
6102 | float32_t * pSrc,
|
---|
6103 | uint32_t blockSize,
|
---|
6104 | float32_t * pResult);
|
---|
6105 |
|
---|
6106 |
|
---|
6107 | /**
|
---|
6108 | * @brief Sum of the squares of the elements of a Q15 vector.
|
---|
6109 | * @param[in] pSrc is input pointer
|
---|
6110 | * @param[in] blockSize is the number of samples to process
|
---|
6111 | * @param[out] pResult is output value.
|
---|
6112 | */
|
---|
6113 | void arm_power_q15(
|
---|
6114 | q15_t * pSrc,
|
---|
6115 | uint32_t blockSize,
|
---|
6116 | q63_t * pResult);
|
---|
6117 |
|
---|
6118 |
|
---|
6119 | /**
|
---|
6120 | * @brief Sum of the squares of the elements of a Q7 vector.
|
---|
6121 | * @param[in] pSrc is input pointer
|
---|
6122 | * @param[in] blockSize is the number of samples to process
|
---|
6123 | * @param[out] pResult is output value.
|
---|
6124 | */
|
---|
6125 | void arm_power_q7(
|
---|
6126 | q7_t * pSrc,
|
---|
6127 | uint32_t blockSize,
|
---|
6128 | q31_t * pResult);
|
---|
6129 |
|
---|
6130 |
|
---|
6131 | /**
|
---|
6132 | * @brief Mean value of a Q7 vector.
|
---|
6133 | * @param[in] pSrc is input pointer
|
---|
6134 | * @param[in] blockSize is the number of samples to process
|
---|
6135 | * @param[out] pResult is output value.
|
---|
6136 | */
|
---|
6137 | void arm_mean_q7(
|
---|
6138 | q7_t * pSrc,
|
---|
6139 | uint32_t blockSize,
|
---|
6140 | q7_t * pResult);
|
---|
6141 |
|
---|
6142 |
|
---|
6143 | /**
|
---|
6144 | * @brief Mean value of a Q15 vector.
|
---|
6145 | * @param[in] pSrc is input pointer
|
---|
6146 | * @param[in] blockSize is the number of samples to process
|
---|
6147 | * @param[out] pResult is output value.
|
---|
6148 | */
|
---|
6149 | void arm_mean_q15(
|
---|
6150 | q15_t * pSrc,
|
---|
6151 | uint32_t blockSize,
|
---|
6152 | q15_t * pResult);
|
---|
6153 |
|
---|
6154 |
|
---|
6155 | /**
|
---|
6156 | * @brief Mean value of a Q31 vector.
|
---|
6157 | * @param[in] pSrc is input pointer
|
---|
6158 | * @param[in] blockSize is the number of samples to process
|
---|
6159 | * @param[out] pResult is output value.
|
---|
6160 | */
|
---|
6161 | void arm_mean_q31(
|
---|
6162 | q31_t * pSrc,
|
---|
6163 | uint32_t blockSize,
|
---|
6164 | q31_t * pResult);
|
---|
6165 |
|
---|
6166 |
|
---|
6167 | /**
|
---|
6168 | * @brief Mean value of a floating-point vector.
|
---|
6169 | * @param[in] pSrc is input pointer
|
---|
6170 | * @param[in] blockSize is the number of samples to process
|
---|
6171 | * @param[out] pResult is output value.
|
---|
6172 | */
|
---|
6173 | void arm_mean_f32(
|
---|
6174 | float32_t * pSrc,
|
---|
6175 | uint32_t blockSize,
|
---|
6176 | float32_t * pResult);
|
---|
6177 |
|
---|
6178 |
|
---|
6179 | /**
|
---|
6180 | * @brief Variance of the elements of a floating-point vector.
|
---|
6181 | * @param[in] pSrc is input pointer
|
---|
6182 | * @param[in] blockSize is the number of samples to process
|
---|
6183 | * @param[out] pResult is output value.
|
---|
6184 | */
|
---|
6185 | void arm_var_f32(
|
---|
6186 | float32_t * pSrc,
|
---|
6187 | uint32_t blockSize,
|
---|
6188 | float32_t * pResult);
|
---|
6189 |
|
---|
6190 |
|
---|
6191 | /**
|
---|
6192 | * @brief Variance of the elements of a Q31 vector.
|
---|
6193 | * @param[in] pSrc is input pointer
|
---|
6194 | * @param[in] blockSize is the number of samples to process
|
---|
6195 | * @param[out] pResult is output value.
|
---|
6196 | */
|
---|
6197 | void arm_var_q31(
|
---|
6198 | q31_t * pSrc,
|
---|
6199 | uint32_t blockSize,
|
---|
6200 | q31_t * pResult);
|
---|
6201 |
|
---|
6202 |
|
---|
6203 | /**
|
---|
6204 | * @brief Variance of the elements of a Q15 vector.
|
---|
6205 | * @param[in] pSrc is input pointer
|
---|
6206 | * @param[in] blockSize is the number of samples to process
|
---|
6207 | * @param[out] pResult is output value.
|
---|
6208 | */
|
---|
6209 | void arm_var_q15(
|
---|
6210 | q15_t * pSrc,
|
---|
6211 | uint32_t blockSize,
|
---|
6212 | q15_t * pResult);
|
---|
6213 |
|
---|
6214 |
|
---|
6215 | /**
|
---|
6216 | * @brief Root Mean Square of the elements of a floating-point vector.
|
---|
6217 | * @param[in] pSrc is input pointer
|
---|
6218 | * @param[in] blockSize is the number of samples to process
|
---|
6219 | * @param[out] pResult is output value.
|
---|
6220 | */
|
---|
6221 | void arm_rms_f32(
|
---|
6222 | float32_t * pSrc,
|
---|
6223 | uint32_t blockSize,
|
---|
6224 | float32_t * pResult);
|
---|
6225 |
|
---|
6226 |
|
---|
6227 | /**
|
---|
6228 | * @brief Root Mean Square of the elements of a Q31 vector.
|
---|
6229 | * @param[in] pSrc is input pointer
|
---|
6230 | * @param[in] blockSize is the number of samples to process
|
---|
6231 | * @param[out] pResult is output value.
|
---|
6232 | */
|
---|
6233 | void arm_rms_q31(
|
---|
6234 | q31_t * pSrc,
|
---|
6235 | uint32_t blockSize,
|
---|
6236 | q31_t * pResult);
|
---|
6237 |
|
---|
6238 |
|
---|
6239 | /**
|
---|
6240 | * @brief Root Mean Square of the elements of a Q15 vector.
|
---|
6241 | * @param[in] pSrc is input pointer
|
---|
6242 | * @param[in] blockSize is the number of samples to process
|
---|
6243 | * @param[out] pResult is output value.
|
---|
6244 | */
|
---|
6245 | void arm_rms_q15(
|
---|
6246 | q15_t * pSrc,
|
---|
6247 | uint32_t blockSize,
|
---|
6248 | q15_t * pResult);
|
---|
6249 |
|
---|
6250 |
|
---|
6251 | /**
|
---|
6252 | * @brief Standard deviation of the elements of a floating-point vector.
|
---|
6253 | * @param[in] pSrc is input pointer
|
---|
6254 | * @param[in] blockSize is the number of samples to process
|
---|
6255 | * @param[out] pResult is output value.
|
---|
6256 | */
|
---|
6257 | void arm_std_f32(
|
---|
6258 | float32_t * pSrc,
|
---|
6259 | uint32_t blockSize,
|
---|
6260 | float32_t * pResult);
|
---|
6261 |
|
---|
6262 |
|
---|
6263 | /**
|
---|
6264 | * @brief Standard deviation of the elements of a Q31 vector.
|
---|
6265 | * @param[in] pSrc is input pointer
|
---|
6266 | * @param[in] blockSize is the number of samples to process
|
---|
6267 | * @param[out] pResult is output value.
|
---|
6268 | */
|
---|
6269 | void arm_std_q31(
|
---|
6270 | q31_t * pSrc,
|
---|
6271 | uint32_t blockSize,
|
---|
6272 | q31_t * pResult);
|
---|
6273 |
|
---|
6274 |
|
---|
6275 | /**
|
---|
6276 | * @brief Standard deviation of the elements of a Q15 vector.
|
---|
6277 | * @param[in] pSrc is input pointer
|
---|
6278 | * @param[in] blockSize is the number of samples to process
|
---|
6279 | * @param[out] pResult is output value.
|
---|
6280 | */
|
---|
6281 | void arm_std_q15(
|
---|
6282 | q15_t * pSrc,
|
---|
6283 | uint32_t blockSize,
|
---|
6284 | q15_t * pResult);
|
---|
6285 |
|
---|
6286 |
|
---|
6287 | /**
|
---|
6288 | * @brief Floating-point complex magnitude
|
---|
6289 | * @param[in] pSrc points to the complex input vector
|
---|
6290 | * @param[out] pDst points to the real output vector
|
---|
6291 | * @param[in] numSamples number of complex samples in the input vector
|
---|
6292 | */
|
---|
6293 | void arm_cmplx_mag_f32(
|
---|
6294 | float32_t * pSrc,
|
---|
6295 | float32_t * pDst,
|
---|
6296 | uint32_t numSamples);
|
---|
6297 |
|
---|
6298 |
|
---|
6299 | /**
|
---|
6300 | * @brief Q31 complex magnitude
|
---|
6301 | * @param[in] pSrc points to the complex input vector
|
---|
6302 | * @param[out] pDst points to the real output vector
|
---|
6303 | * @param[in] numSamples number of complex samples in the input vector
|
---|
6304 | */
|
---|
6305 | void arm_cmplx_mag_q31(
|
---|
6306 | q31_t * pSrc,
|
---|
6307 | q31_t * pDst,
|
---|
6308 | uint32_t numSamples);
|
---|
6309 |
|
---|
6310 |
|
---|
6311 | /**
|
---|
6312 | * @brief Q15 complex magnitude
|
---|
6313 | * @param[in] pSrc points to the complex input vector
|
---|
6314 | * @param[out] pDst points to the real output vector
|
---|
6315 | * @param[in] numSamples number of complex samples in the input vector
|
---|
6316 | */
|
---|
6317 | void arm_cmplx_mag_q15(
|
---|
6318 | q15_t * pSrc,
|
---|
6319 | q15_t * pDst,
|
---|
6320 | uint32_t numSamples);
|
---|
6321 |
|
---|
6322 |
|
---|
6323 | /**
|
---|
6324 | * @brief Q15 complex dot product
|
---|
6325 | * @param[in] pSrcA points to the first input vector
|
---|
6326 | * @param[in] pSrcB points to the second input vector
|
---|
6327 | * @param[in] numSamples number of complex samples in each vector
|
---|
6328 | * @param[out] realResult real part of the result returned here
|
---|
6329 | * @param[out] imagResult imaginary part of the result returned here
|
---|
6330 | */
|
---|
6331 | void arm_cmplx_dot_prod_q15(
|
---|
6332 | q15_t * pSrcA,
|
---|
6333 | q15_t * pSrcB,
|
---|
6334 | uint32_t numSamples,
|
---|
6335 | q31_t * realResult,
|
---|
6336 | q31_t * imagResult);
|
---|
6337 |
|
---|
6338 |
|
---|
6339 | /**
|
---|
6340 | * @brief Q31 complex dot product
|
---|
6341 | * @param[in] pSrcA points to the first input vector
|
---|
6342 | * @param[in] pSrcB points to the second input vector
|
---|
6343 | * @param[in] numSamples number of complex samples in each vector
|
---|
6344 | * @param[out] realResult real part of the result returned here
|
---|
6345 | * @param[out] imagResult imaginary part of the result returned here
|
---|
6346 | */
|
---|
6347 | void arm_cmplx_dot_prod_q31(
|
---|
6348 | q31_t * pSrcA,
|
---|
6349 | q31_t * pSrcB,
|
---|
6350 | uint32_t numSamples,
|
---|
6351 | q63_t * realResult,
|
---|
6352 | q63_t * imagResult);
|
---|
6353 |
|
---|
6354 |
|
---|
6355 | /**
|
---|
6356 | * @brief Floating-point complex dot product
|
---|
6357 | * @param[in] pSrcA points to the first input vector
|
---|
6358 | * @param[in] pSrcB points to the second input vector
|
---|
6359 | * @param[in] numSamples number of complex samples in each vector
|
---|
6360 | * @param[out] realResult real part of the result returned here
|
---|
6361 | * @param[out] imagResult imaginary part of the result returned here
|
---|
6362 | */
|
---|
6363 | void arm_cmplx_dot_prod_f32(
|
---|
6364 | float32_t * pSrcA,
|
---|
6365 | float32_t * pSrcB,
|
---|
6366 | uint32_t numSamples,
|
---|
6367 | float32_t * realResult,
|
---|
6368 | float32_t * imagResult);
|
---|
6369 |
|
---|
6370 |
|
---|
6371 | /**
|
---|
6372 | * @brief Q15 complex-by-real multiplication
|
---|
6373 | * @param[in] pSrcCmplx points to the complex input vector
|
---|
6374 | * @param[in] pSrcReal points to the real input vector
|
---|
6375 | * @param[out] pCmplxDst points to the complex output vector
|
---|
6376 | * @param[in] numSamples number of samples in each vector
|
---|
6377 | */
|
---|
6378 | void arm_cmplx_mult_real_q15(
|
---|
6379 | q15_t * pSrcCmplx,
|
---|
6380 | q15_t * pSrcReal,
|
---|
6381 | q15_t * pCmplxDst,
|
---|
6382 | uint32_t numSamples);
|
---|
6383 |
|
---|
6384 |
|
---|
6385 | /**
|
---|
6386 | * @brief Q31 complex-by-real multiplication
|
---|
6387 | * @param[in] pSrcCmplx points to the complex input vector
|
---|
6388 | * @param[in] pSrcReal points to the real input vector
|
---|
6389 | * @param[out] pCmplxDst points to the complex output vector
|
---|
6390 | * @param[in] numSamples number of samples in each vector
|
---|
6391 | */
|
---|
6392 | void arm_cmplx_mult_real_q31(
|
---|
6393 | q31_t * pSrcCmplx,
|
---|
6394 | q31_t * pSrcReal,
|
---|
6395 | q31_t * pCmplxDst,
|
---|
6396 | uint32_t numSamples);
|
---|
6397 |
|
---|
6398 |
|
---|
6399 | /**
|
---|
6400 | * @brief Floating-point complex-by-real multiplication
|
---|
6401 | * @param[in] pSrcCmplx points to the complex input vector
|
---|
6402 | * @param[in] pSrcReal points to the real input vector
|
---|
6403 | * @param[out] pCmplxDst points to the complex output vector
|
---|
6404 | * @param[in] numSamples number of samples in each vector
|
---|
6405 | */
|
---|
6406 | void arm_cmplx_mult_real_f32(
|
---|
6407 | float32_t * pSrcCmplx,
|
---|
6408 | float32_t * pSrcReal,
|
---|
6409 | float32_t * pCmplxDst,
|
---|
6410 | uint32_t numSamples);
|
---|
6411 |
|
---|
6412 |
|
---|
6413 | /**
|
---|
6414 | * @brief Minimum value of a Q7 vector.
|
---|
6415 | * @param[in] pSrc is input pointer
|
---|
6416 | * @param[in] blockSize is the number of samples to process
|
---|
6417 | * @param[out] result is output pointer
|
---|
6418 | * @param[in] index is the array index of the minimum value in the input buffer.
|
---|
6419 | */
|
---|
6420 | void arm_min_q7(
|
---|
6421 | q7_t * pSrc,
|
---|
6422 | uint32_t blockSize,
|
---|
6423 | q7_t * result,
|
---|
6424 | uint32_t * index);
|
---|
6425 |
|
---|
6426 |
|
---|
6427 | /**
|
---|
6428 | * @brief Minimum value of a Q15 vector.
|
---|
6429 | * @param[in] pSrc is input pointer
|
---|
6430 | * @param[in] blockSize is the number of samples to process
|
---|
6431 | * @param[out] pResult is output pointer
|
---|
6432 | * @param[in] pIndex is the array index of the minimum value in the input buffer.
|
---|
6433 | */
|
---|
6434 | void arm_min_q15(
|
---|
6435 | q15_t * pSrc,
|
---|
6436 | uint32_t blockSize,
|
---|
6437 | q15_t * pResult,
|
---|
6438 | uint32_t * pIndex);
|
---|
6439 |
|
---|
6440 |
|
---|
6441 | /**
|
---|
6442 | * @brief Minimum value of a Q31 vector.
|
---|
6443 | * @param[in] pSrc is input pointer
|
---|
6444 | * @param[in] blockSize is the number of samples to process
|
---|
6445 | * @param[out] pResult is output pointer
|
---|
6446 | * @param[out] pIndex is the array index of the minimum value in the input buffer.
|
---|
6447 | */
|
---|
6448 | void arm_min_q31(
|
---|
6449 | q31_t * pSrc,
|
---|
6450 | uint32_t blockSize,
|
---|
6451 | q31_t * pResult,
|
---|
6452 | uint32_t * pIndex);
|
---|
6453 |
|
---|
6454 |
|
---|
6455 | /**
|
---|
6456 | * @brief Minimum value of a floating-point vector.
|
---|
6457 | * @param[in] pSrc is input pointer
|
---|
6458 | * @param[in] blockSize is the number of samples to process
|
---|
6459 | * @param[out] pResult is output pointer
|
---|
6460 | * @param[out] pIndex is the array index of the minimum value in the input buffer.
|
---|
6461 | */
|
---|
6462 | void arm_min_f32(
|
---|
6463 | float32_t * pSrc,
|
---|
6464 | uint32_t blockSize,
|
---|
6465 | float32_t * pResult,
|
---|
6466 | uint32_t * pIndex);
|
---|
6467 |
|
---|
6468 |
|
---|
6469 | /**
|
---|
6470 | * @brief Maximum value of a Q7 vector.
|
---|
6471 | * @param[in] pSrc points to the input buffer
|
---|
6472 | * @param[in] blockSize length of the input vector
|
---|
6473 | * @param[out] pResult maximum value returned here
|
---|
6474 | * @param[out] pIndex index of maximum value returned here
|
---|
6475 | */
|
---|
6476 | void arm_max_q7(
|
---|
6477 | q7_t * pSrc,
|
---|
6478 | uint32_t blockSize,
|
---|
6479 | q7_t * pResult,
|
---|
6480 | uint32_t * pIndex);
|
---|
6481 |
|
---|
6482 |
|
---|
6483 | /**
|
---|
6484 | * @brief Maximum value of a Q15 vector.
|
---|
6485 | * @param[in] pSrc points to the input buffer
|
---|
6486 | * @param[in] blockSize length of the input vector
|
---|
6487 | * @param[out] pResult maximum value returned here
|
---|
6488 | * @param[out] pIndex index of maximum value returned here
|
---|
6489 | */
|
---|
6490 | void arm_max_q15(
|
---|
6491 | q15_t * pSrc,
|
---|
6492 | uint32_t blockSize,
|
---|
6493 | q15_t * pResult,
|
---|
6494 | uint32_t * pIndex);
|
---|
6495 |
|
---|
6496 |
|
---|
6497 | /**
|
---|
6498 | * @brief Maximum value of a Q31 vector.
|
---|
6499 | * @param[in] pSrc points to the input buffer
|
---|
6500 | * @param[in] blockSize length of the input vector
|
---|
6501 | * @param[out] pResult maximum value returned here
|
---|
6502 | * @param[out] pIndex index of maximum value returned here
|
---|
6503 | */
|
---|
6504 | void arm_max_q31(
|
---|
6505 | q31_t * pSrc,
|
---|
6506 | uint32_t blockSize,
|
---|
6507 | q31_t * pResult,
|
---|
6508 | uint32_t * pIndex);
|
---|
6509 |
|
---|
6510 |
|
---|
6511 | /**
|
---|
6512 | * @brief Maximum value of a floating-point vector.
|
---|
6513 | * @param[in] pSrc points to the input buffer
|
---|
6514 | * @param[in] blockSize length of the input vector
|
---|
6515 | * @param[out] pResult maximum value returned here
|
---|
6516 | * @param[out] pIndex index of maximum value returned here
|
---|
6517 | */
|
---|
6518 | void arm_max_f32(
|
---|
6519 | float32_t * pSrc,
|
---|
6520 | uint32_t blockSize,
|
---|
6521 | float32_t * pResult,
|
---|
6522 | uint32_t * pIndex);
|
---|
6523 |
|
---|
6524 |
|
---|
6525 | /**
|
---|
6526 | * @brief Q15 complex-by-complex multiplication
|
---|
6527 | * @param[in] pSrcA points to the first input vector
|
---|
6528 | * @param[in] pSrcB points to the second input vector
|
---|
6529 | * @param[out] pDst points to the output vector
|
---|
6530 | * @param[in] numSamples number of complex samples in each vector
|
---|
6531 | */
|
---|
6532 | void arm_cmplx_mult_cmplx_q15(
|
---|
6533 | q15_t * pSrcA,
|
---|
6534 | q15_t * pSrcB,
|
---|
6535 | q15_t * pDst,
|
---|
6536 | uint32_t numSamples);
|
---|
6537 |
|
---|
6538 |
|
---|
6539 | /**
|
---|
6540 | * @brief Q31 complex-by-complex multiplication
|
---|
6541 | * @param[in] pSrcA points to the first input vector
|
---|
6542 | * @param[in] pSrcB points to the second input vector
|
---|
6543 | * @param[out] pDst points to the output vector
|
---|
6544 | * @param[in] numSamples number of complex samples in each vector
|
---|
6545 | */
|
---|
6546 | void arm_cmplx_mult_cmplx_q31(
|
---|
6547 | q31_t * pSrcA,
|
---|
6548 | q31_t * pSrcB,
|
---|
6549 | q31_t * pDst,
|
---|
6550 | uint32_t numSamples);
|
---|
6551 |
|
---|
6552 |
|
---|
6553 | /**
|
---|
6554 | * @brief Floating-point complex-by-complex multiplication
|
---|
6555 | * @param[in] pSrcA points to the first input vector
|
---|
6556 | * @param[in] pSrcB points to the second input vector
|
---|
6557 | * @param[out] pDst points to the output vector
|
---|
6558 | * @param[in] numSamples number of complex samples in each vector
|
---|
6559 | */
|
---|
6560 | void arm_cmplx_mult_cmplx_f32(
|
---|
6561 | float32_t * pSrcA,
|
---|
6562 | float32_t * pSrcB,
|
---|
6563 | float32_t * pDst,
|
---|
6564 | uint32_t numSamples);
|
---|
6565 |
|
---|
6566 |
|
---|
6567 | /**
|
---|
6568 | * @brief Converts the elements of the floating-point vector to Q31 vector.
|
---|
6569 | * @param[in] pSrc points to the floating-point input vector
|
---|
6570 | * @param[out] pDst points to the Q31 output vector
|
---|
6571 | * @param[in] blockSize length of the input vector
|
---|
6572 | */
|
---|
6573 | void arm_float_to_q31(
|
---|
6574 | float32_t * pSrc,
|
---|
6575 | q31_t * pDst,
|
---|
6576 | uint32_t blockSize);
|
---|
6577 |
|
---|
6578 |
|
---|
6579 | /**
|
---|
6580 | * @brief Converts the elements of the floating-point vector to Q15 vector.
|
---|
6581 | * @param[in] pSrc points to the floating-point input vector
|
---|
6582 | * @param[out] pDst points to the Q15 output vector
|
---|
6583 | * @param[in] blockSize length of the input vector
|
---|
6584 | */
|
---|
6585 | void arm_float_to_q15(
|
---|
6586 | float32_t * pSrc,
|
---|
6587 | q15_t * pDst,
|
---|
6588 | uint32_t blockSize);
|
---|
6589 |
|
---|
6590 |
|
---|
6591 | /**
|
---|
6592 | * @brief Converts the elements of the floating-point vector to Q7 vector.
|
---|
6593 | * @param[in] pSrc points to the floating-point input vector
|
---|
6594 | * @param[out] pDst points to the Q7 output vector
|
---|
6595 | * @param[in] blockSize length of the input vector
|
---|
6596 | */
|
---|
6597 | void arm_float_to_q7(
|
---|
6598 | float32_t * pSrc,
|
---|
6599 | q7_t * pDst,
|
---|
6600 | uint32_t blockSize);
|
---|
6601 |
|
---|
6602 |
|
---|
6603 | /**
|
---|
6604 | * @brief Converts the elements of the Q31 vector to Q15 vector.
|
---|
6605 | * @param[in] pSrc is input pointer
|
---|
6606 | * @param[out] pDst is output pointer
|
---|
6607 | * @param[in] blockSize is the number of samples to process
|
---|
6608 | */
|
---|
6609 | void arm_q31_to_q15(
|
---|
6610 | q31_t * pSrc,
|
---|
6611 | q15_t * pDst,
|
---|
6612 | uint32_t blockSize);
|
---|
6613 |
|
---|
6614 |
|
---|
6615 | /**
|
---|
6616 | * @brief Converts the elements of the Q31 vector to Q7 vector.
|
---|
6617 | * @param[in] pSrc is input pointer
|
---|
6618 | * @param[out] pDst is output pointer
|
---|
6619 | * @param[in] blockSize is the number of samples to process
|
---|
6620 | */
|
---|
6621 | void arm_q31_to_q7(
|
---|
6622 | q31_t * pSrc,
|
---|
6623 | q7_t * pDst,
|
---|
6624 | uint32_t blockSize);
|
---|
6625 |
|
---|
6626 |
|
---|
6627 | /**
|
---|
6628 | * @brief Converts the elements of the Q15 vector to floating-point vector.
|
---|
6629 | * @param[in] pSrc is input pointer
|
---|
6630 | * @param[out] pDst is output pointer
|
---|
6631 | * @param[in] blockSize is the number of samples to process
|
---|
6632 | */
|
---|
6633 | void arm_q15_to_float(
|
---|
6634 | q15_t * pSrc,
|
---|
6635 | float32_t * pDst,
|
---|
6636 | uint32_t blockSize);
|
---|
6637 |
|
---|
6638 |
|
---|
6639 | /**
|
---|
6640 | * @brief Converts the elements of the Q15 vector to Q31 vector.
|
---|
6641 | * @param[in] pSrc is input pointer
|
---|
6642 | * @param[out] pDst is output pointer
|
---|
6643 | * @param[in] blockSize is the number of samples to process
|
---|
6644 | */
|
---|
6645 | void arm_q15_to_q31(
|
---|
6646 | q15_t * pSrc,
|
---|
6647 | q31_t * pDst,
|
---|
6648 | uint32_t blockSize);
|
---|
6649 |
|
---|
6650 |
|
---|
6651 | /**
|
---|
6652 | * @brief Converts the elements of the Q15 vector to Q7 vector.
|
---|
6653 | * @param[in] pSrc is input pointer
|
---|
6654 | * @param[out] pDst is output pointer
|
---|
6655 | * @param[in] blockSize is the number of samples to process
|
---|
6656 | */
|
---|
6657 | void arm_q15_to_q7(
|
---|
6658 | q15_t * pSrc,
|
---|
6659 | q7_t * pDst,
|
---|
6660 | uint32_t blockSize);
|
---|
6661 |
|
---|
6662 |
|
---|
6663 | /**
|
---|
6664 | * @ingroup groupInterpolation
|
---|
6665 | */
|
---|
6666 |
|
---|
6667 | /**
|
---|
6668 | * @defgroup BilinearInterpolate Bilinear Interpolation
|
---|
6669 | *
|
---|
6670 | * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
|
---|
6671 | * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
|
---|
6672 | * determines values between the grid points.
|
---|
6673 | * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
|
---|
6674 | * Bilinear interpolation is often used in image processing to rescale images.
|
---|
6675 | * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
|
---|
6676 | *
|
---|
6677 | * <b>Algorithm</b>
|
---|
6678 | * \par
|
---|
6679 | * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
|
---|
6680 | * For floating-point, the instance structure is defined as:
|
---|
6681 | * <pre>
|
---|
6682 | * typedef struct
|
---|
6683 | * {
|
---|
6684 | * uint16_t numRows;
|
---|
6685 | * uint16_t numCols;
|
---|
6686 | * float32_t *pData;
|
---|
6687 | * } arm_bilinear_interp_instance_f32;
|
---|
6688 | * </pre>
|
---|
6689 | *
|
---|
6690 | * \par
|
---|
6691 | * where <code>numRows</code> specifies the number of rows in the table;
|
---|
6692 | * <code>numCols</code> specifies the number of columns in the table;
|
---|
6693 | * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
|
---|
6694 | * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
|
---|
6695 | * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
|
---|
6696 | *
|
---|
6697 | * \par
|
---|
6698 | * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
|
---|
6699 | * <pre>
|
---|
6700 | * XF = floor(x)
|
---|
6701 | * YF = floor(y)
|
---|
6702 | * </pre>
|
---|
6703 | * \par
|
---|
6704 | * The interpolated output point is computed as:
|
---|
6705 | * <pre>
|
---|
6706 | * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
|
---|
6707 | * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
|
---|
6708 | * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
|
---|
6709 | * + f(XF+1, YF+1) * (x-XF)*(y-YF)
|
---|
6710 | * </pre>
|
---|
6711 | * Note that the coordinates (x, y) contain integer and fractional components.
|
---|
6712 | * The integer components specify which portion of the table to use while the
|
---|
6713 | * fractional components control the interpolation processor.
|
---|
6714 | *
|
---|
6715 | * \par
|
---|
6716 | * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
|
---|
6717 | */
|
---|
6718 |
|
---|
6719 | /**
|
---|
6720 | * @addtogroup BilinearInterpolate
|
---|
6721 | * @{
|
---|
6722 | */
|
---|
6723 |
|
---|
6724 |
|
---|
6725 | /**
|
---|
6726 | *
|
---|
6727 | * @brief Floating-point bilinear interpolation.
|
---|
6728 | * @param[in,out] S points to an instance of the interpolation structure.
|
---|
6729 | * @param[in] X interpolation coordinate.
|
---|
6730 | * @param[in] Y interpolation coordinate.
|
---|
6731 | * @return out interpolated value.
|
---|
6732 | */
|
---|
6733 | CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32(
|
---|
6734 | const arm_bilinear_interp_instance_f32 * S,
|
---|
6735 | float32_t X,
|
---|
6736 | float32_t Y)
|
---|
6737 | {
|
---|
6738 | float32_t out;
|
---|
6739 | float32_t f00, f01, f10, f11;
|
---|
6740 | float32_t *pData = S->pData;
|
---|
6741 | int32_t xIndex, yIndex, index;
|
---|
6742 | float32_t xdiff, ydiff;
|
---|
6743 | float32_t b1, b2, b3, b4;
|
---|
6744 |
|
---|
6745 | xIndex = (int32_t) X;
|
---|
6746 | yIndex = (int32_t) Y;
|
---|
6747 |
|
---|
6748 | /* Care taken for table outside boundary */
|
---|
6749 | /* Returns zero output when values are outside table boundary */
|
---|
6750 | if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
|
---|
6751 | {
|
---|
6752 | return (0);
|
---|
6753 | }
|
---|
6754 |
|
---|
6755 | /* Calculation of index for two nearest points in X-direction */
|
---|
6756 | index = (xIndex - 1) + (yIndex - 1) * S->numCols;
|
---|
6757 |
|
---|
6758 |
|
---|
6759 | /* Read two nearest points in X-direction */
|
---|
6760 | f00 = pData[index];
|
---|
6761 | f01 = pData[index + 1];
|
---|
6762 |
|
---|
6763 | /* Calculation of index for two nearest points in Y-direction */
|
---|
6764 | index = (xIndex - 1) + (yIndex) * S->numCols;
|
---|
6765 |
|
---|
6766 |
|
---|
6767 | /* Read two nearest points in Y-direction */
|
---|
6768 | f10 = pData[index];
|
---|
6769 | f11 = pData[index + 1];
|
---|
6770 |
|
---|
6771 | /* Calculation of intermediate values */
|
---|
6772 | b1 = f00;
|
---|
6773 | b2 = f01 - f00;
|
---|
6774 | b3 = f10 - f00;
|
---|
6775 | b4 = f00 - f01 - f10 + f11;
|
---|
6776 |
|
---|
6777 | /* Calculation of fractional part in X */
|
---|
6778 | xdiff = X - xIndex;
|
---|
6779 |
|
---|
6780 | /* Calculation of fractional part in Y */
|
---|
6781 | ydiff = Y - yIndex;
|
---|
6782 |
|
---|
6783 | /* Calculation of bi-linear interpolated output */
|
---|
6784 | out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
|
---|
6785 |
|
---|
6786 | /* return to application */
|
---|
6787 | return (out);
|
---|
6788 | }
|
---|
6789 |
|
---|
6790 |
|
---|
6791 | /**
|
---|
6792 | *
|
---|
6793 | * @brief Q31 bilinear interpolation.
|
---|
6794 | * @param[in,out] S points to an instance of the interpolation structure.
|
---|
6795 | * @param[in] X interpolation coordinate in 12.20 format.
|
---|
6796 | * @param[in] Y interpolation coordinate in 12.20 format.
|
---|
6797 | * @return out interpolated value.
|
---|
6798 | */
|
---|
6799 | CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31(
|
---|
6800 | arm_bilinear_interp_instance_q31 * S,
|
---|
6801 | q31_t X,
|
---|
6802 | q31_t Y)
|
---|
6803 | {
|
---|
6804 | q31_t out; /* Temporary output */
|
---|
6805 | q31_t acc = 0; /* output */
|
---|
6806 | q31_t xfract, yfract; /* X, Y fractional parts */
|
---|
6807 | q31_t x1, x2, y1, y2; /* Nearest output values */
|
---|
6808 | int32_t rI, cI; /* Row and column indices */
|
---|
6809 | q31_t *pYData = S->pData; /* pointer to output table values */
|
---|
6810 | uint32_t nCols = S->numCols; /* num of rows */
|
---|
6811 |
|
---|
6812 | /* Input is in 12.20 format */
|
---|
6813 | /* 12 bits for the table index */
|
---|
6814 | /* Index value calculation */
|
---|
6815 | rI = ((X & (q31_t)0xFFF00000) >> 20);
|
---|
6816 |
|
---|
6817 | /* Input is in 12.20 format */
|
---|
6818 | /* 12 bits for the table index */
|
---|
6819 | /* Index value calculation */
|
---|
6820 | cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
---|
6821 |
|
---|
6822 | /* Care taken for table outside boundary */
|
---|
6823 | /* Returns zero output when values are outside table boundary */
|
---|
6824 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
---|
6825 | {
|
---|
6826 | return (0);
|
---|
6827 | }
|
---|
6828 |
|
---|
6829 | /* 20 bits for the fractional part */
|
---|
6830 | /* shift left xfract by 11 to keep 1.31 format */
|
---|
6831 | xfract = (X & 0x000FFFFF) << 11U;
|
---|
6832 |
|
---|
6833 | /* Read two nearest output values from the index */
|
---|
6834 | x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
|
---|
6835 | x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
|
---|
6836 |
|
---|
6837 | /* 20 bits for the fractional part */
|
---|
6838 | /* shift left yfract by 11 to keep 1.31 format */
|
---|
6839 | yfract = (Y & 0x000FFFFF) << 11U;
|
---|
6840 |
|
---|
6841 | /* Read two nearest output values from the index */
|
---|
6842 | y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
|
---|
6843 | y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
|
---|
6844 |
|
---|
6845 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
|
---|
6846 | out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
|
---|
6847 | acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
|
---|
6848 |
|
---|
6849 | /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
|
---|
6850 | out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
|
---|
6851 | acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
|
---|
6852 |
|
---|
6853 | /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
|
---|
6854 | out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
|
---|
6855 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
|
---|
6856 |
|
---|
6857 | /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
|
---|
6858 | out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
|
---|
6859 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
|
---|
6860 |
|
---|
6861 | /* Convert acc to 1.31(q31) format */
|
---|
6862 | return ((q31_t)(acc << 2));
|
---|
6863 | }
|
---|
6864 |
|
---|
6865 |
|
---|
6866 | /**
|
---|
6867 | * @brief Q15 bilinear interpolation.
|
---|
6868 | * @param[in,out] S points to an instance of the interpolation structure.
|
---|
6869 | * @param[in] X interpolation coordinate in 12.20 format.
|
---|
6870 | * @param[in] Y interpolation coordinate in 12.20 format.
|
---|
6871 | * @return out interpolated value.
|
---|
6872 | */
|
---|
6873 | CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15(
|
---|
6874 | arm_bilinear_interp_instance_q15 * S,
|
---|
6875 | q31_t X,
|
---|
6876 | q31_t Y)
|
---|
6877 | {
|
---|
6878 | q63_t acc = 0; /* output */
|
---|
6879 | q31_t out; /* Temporary output */
|
---|
6880 | q15_t x1, x2, y1, y2; /* Nearest output values */
|
---|
6881 | q31_t xfract, yfract; /* X, Y fractional parts */
|
---|
6882 | int32_t rI, cI; /* Row and column indices */
|
---|
6883 | q15_t *pYData = S->pData; /* pointer to output table values */
|
---|
6884 | uint32_t nCols = S->numCols; /* num of rows */
|
---|
6885 |
|
---|
6886 | /* Input is in 12.20 format */
|
---|
6887 | /* 12 bits for the table index */
|
---|
6888 | /* Index value calculation */
|
---|
6889 | rI = ((X & (q31_t)0xFFF00000) >> 20);
|
---|
6890 |
|
---|
6891 | /* Input is in 12.20 format */
|
---|
6892 | /* 12 bits for the table index */
|
---|
6893 | /* Index value calculation */
|
---|
6894 | cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
---|
6895 |
|
---|
6896 | /* Care taken for table outside boundary */
|
---|
6897 | /* Returns zero output when values are outside table boundary */
|
---|
6898 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
---|
6899 | {
|
---|
6900 | return (0);
|
---|
6901 | }
|
---|
6902 |
|
---|
6903 | /* 20 bits for the fractional part */
|
---|
6904 | /* xfract should be in 12.20 format */
|
---|
6905 | xfract = (X & 0x000FFFFF);
|
---|
6906 |
|
---|
6907 | /* Read two nearest output values from the index */
|
---|
6908 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
|
---|
6909 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
|
---|
6910 |
|
---|
6911 | /* 20 bits for the fractional part */
|
---|
6912 | /* yfract should be in 12.20 format */
|
---|
6913 | yfract = (Y & 0x000FFFFF);
|
---|
6914 |
|
---|
6915 | /* Read two nearest output values from the index */
|
---|
6916 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
|
---|
6917 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
|
---|
6918 |
|
---|
6919 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
|
---|
6920 |
|
---|
6921 | /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
|
---|
6922 | /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
|
---|
6923 | out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4U);
|
---|
6924 | acc = ((q63_t) out * (0xFFFFF - yfract));
|
---|
6925 |
|
---|
6926 | /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
|
---|
6927 | out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4U);
|
---|
6928 | acc += ((q63_t) out * (xfract));
|
---|
6929 |
|
---|
6930 | /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
|
---|
6931 | out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4U);
|
---|
6932 | acc += ((q63_t) out * (yfract));
|
---|
6933 |
|
---|
6934 | /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
|
---|
6935 | out = (q31_t) (((q63_t) y2 * (xfract)) >> 4U);
|
---|
6936 | acc += ((q63_t) out * (yfract));
|
---|
6937 |
|
---|
6938 | /* acc is in 13.51 format and down shift acc by 36 times */
|
---|
6939 | /* Convert out to 1.15 format */
|
---|
6940 | return ((q15_t)(acc >> 36));
|
---|
6941 | }
|
---|
6942 |
|
---|
6943 |
|
---|
6944 | /**
|
---|
6945 | * @brief Q7 bilinear interpolation.
|
---|
6946 | * @param[in,out] S points to an instance of the interpolation structure.
|
---|
6947 | * @param[in] X interpolation coordinate in 12.20 format.
|
---|
6948 | * @param[in] Y interpolation coordinate in 12.20 format.
|
---|
6949 | * @return out interpolated value.
|
---|
6950 | */
|
---|
6951 | CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7(
|
---|
6952 | arm_bilinear_interp_instance_q7 * S,
|
---|
6953 | q31_t X,
|
---|
6954 | q31_t Y)
|
---|
6955 | {
|
---|
6956 | q63_t acc = 0; /* output */
|
---|
6957 | q31_t out; /* Temporary output */
|
---|
6958 | q31_t xfract, yfract; /* X, Y fractional parts */
|
---|
6959 | q7_t x1, x2, y1, y2; /* Nearest output values */
|
---|
6960 | int32_t rI, cI; /* Row and column indices */
|
---|
6961 | q7_t *pYData = S->pData; /* pointer to output table values */
|
---|
6962 | uint32_t nCols = S->numCols; /* num of rows */
|
---|
6963 |
|
---|
6964 | /* Input is in 12.20 format */
|
---|
6965 | /* 12 bits for the table index */
|
---|
6966 | /* Index value calculation */
|
---|
6967 | rI = ((X & (q31_t)0xFFF00000) >> 20);
|
---|
6968 |
|
---|
6969 | /* Input is in 12.20 format */
|
---|
6970 | /* 12 bits for the table index */
|
---|
6971 | /* Index value calculation */
|
---|
6972 | cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
---|
6973 |
|
---|
6974 | /* Care taken for table outside boundary */
|
---|
6975 | /* Returns zero output when values are outside table boundary */
|
---|
6976 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
---|
6977 | {
|
---|
6978 | return (0);
|
---|
6979 | }
|
---|
6980 |
|
---|
6981 | /* 20 bits for the fractional part */
|
---|
6982 | /* xfract should be in 12.20 format */
|
---|
6983 | xfract = (X & (q31_t)0x000FFFFF);
|
---|
6984 |
|
---|
6985 | /* Read two nearest output values from the index */
|
---|
6986 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
|
---|
6987 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
|
---|
6988 |
|
---|
6989 | /* 20 bits for the fractional part */
|
---|
6990 | /* yfract should be in 12.20 format */
|
---|
6991 | yfract = (Y & (q31_t)0x000FFFFF);
|
---|
6992 |
|
---|
6993 | /* Read two nearest output values from the index */
|
---|
6994 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
|
---|
6995 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
|
---|
6996 |
|
---|
6997 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
|
---|
6998 | out = ((x1 * (0xFFFFF - xfract)));
|
---|
6999 | acc = (((q63_t) out * (0xFFFFF - yfract)));
|
---|
7000 |
|
---|
7001 | /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
|
---|
7002 | out = ((x2 * (0xFFFFF - yfract)));
|
---|
7003 | acc += (((q63_t) out * (xfract)));
|
---|
7004 |
|
---|
7005 | /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
|
---|
7006 | out = ((y1 * (0xFFFFF - xfract)));
|
---|
7007 | acc += (((q63_t) out * (yfract)));
|
---|
7008 |
|
---|
7009 | /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
|
---|
7010 | out = ((y2 * (yfract)));
|
---|
7011 | acc += (((q63_t) out * (xfract)));
|
---|
7012 |
|
---|
7013 | /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
|
---|
7014 | return ((q7_t)(acc >> 40));
|
---|
7015 | }
|
---|
7016 |
|
---|
7017 | /**
|
---|
7018 | * @} end of BilinearInterpolate group
|
---|
7019 | */
|
---|
7020 |
|
---|
7021 |
|
---|
7022 | /* SMMLAR */
|
---|
7023 | #define multAcc_32x32_keep32_R(a, x, y) \
|
---|
7024 | a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
|
---|
7025 |
|
---|
7026 | /* SMMLSR */
|
---|
7027 | #define multSub_32x32_keep32_R(a, x, y) \
|
---|
7028 | a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
|
---|
7029 |
|
---|
7030 | /* SMMULR */
|
---|
7031 | #define mult_32x32_keep32_R(a, x, y) \
|
---|
7032 | a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
|
---|
7033 |
|
---|
7034 | /* SMMLA */
|
---|
7035 | #define multAcc_32x32_keep32(a, x, y) \
|
---|
7036 | a += (q31_t) (((q63_t) x * y) >> 32)
|
---|
7037 |
|
---|
7038 | /* SMMLS */
|
---|
7039 | #define multSub_32x32_keep32(a, x, y) \
|
---|
7040 | a -= (q31_t) (((q63_t) x * y) >> 32)
|
---|
7041 |
|
---|
7042 | /* SMMUL */
|
---|
7043 | #define mult_32x32_keep32(a, x, y) \
|
---|
7044 | a = (q31_t) (((q63_t) x * y ) >> 32)
|
---|
7045 |
|
---|
7046 |
|
---|
7047 | #if defined ( __CC_ARM )
|
---|
7048 | /* Enter low optimization region - place directly above function definition */
|
---|
7049 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
|
---|
7050 | #define LOW_OPTIMIZATION_ENTER \
|
---|
7051 | _Pragma ("push") \
|
---|
7052 | _Pragma ("O1")
|
---|
7053 | #else
|
---|
7054 | #define LOW_OPTIMIZATION_ENTER
|
---|
7055 | #endif
|
---|
7056 |
|
---|
7057 | /* Exit low optimization region - place directly after end of function definition */
|
---|
7058 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
|
---|
7059 | #define LOW_OPTIMIZATION_EXIT \
|
---|
7060 | _Pragma ("pop")
|
---|
7061 | #else
|
---|
7062 | #define LOW_OPTIMIZATION_EXIT
|
---|
7063 | #endif
|
---|
7064 |
|
---|
7065 | /* Enter low optimization region - place directly above function definition */
|
---|
7066 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
---|
7067 |
|
---|
7068 | /* Exit low optimization region - place directly after end of function definition */
|
---|
7069 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
---|
7070 |
|
---|
7071 | #elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
|
---|
7072 | #define LOW_OPTIMIZATION_ENTER
|
---|
7073 | #define LOW_OPTIMIZATION_EXIT
|
---|
7074 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
---|
7075 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
---|
7076 |
|
---|
7077 | #elif defined ( __GNUC__ )
|
---|
7078 | #define LOW_OPTIMIZATION_ENTER \
|
---|
7079 | __attribute__(( optimize("-O1") ))
|
---|
7080 | #define LOW_OPTIMIZATION_EXIT
|
---|
7081 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
---|
7082 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
---|
7083 |
|
---|
7084 | #elif defined ( __ICCARM__ )
|
---|
7085 | /* Enter low optimization region - place directly above function definition */
|
---|
7086 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
|
---|
7087 | #define LOW_OPTIMIZATION_ENTER \
|
---|
7088 | _Pragma ("optimize=low")
|
---|
7089 | #else
|
---|
7090 | #define LOW_OPTIMIZATION_ENTER
|
---|
7091 | #endif
|
---|
7092 |
|
---|
7093 | /* Exit low optimization region - place directly after end of function definition */
|
---|
7094 | #define LOW_OPTIMIZATION_EXIT
|
---|
7095 |
|
---|
7096 | /* Enter low optimization region - place directly above function definition */
|
---|
7097 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
|
---|
7098 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
|
---|
7099 | _Pragma ("optimize=low")
|
---|
7100 | #else
|
---|
7101 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
---|
7102 | #endif
|
---|
7103 |
|
---|
7104 | /* Exit low optimization region - place directly after end of function definition */
|
---|
7105 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
---|
7106 |
|
---|
7107 | #elif defined ( __TI_ARM__ )
|
---|
7108 | #define LOW_OPTIMIZATION_ENTER
|
---|
7109 | #define LOW_OPTIMIZATION_EXIT
|
---|
7110 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
---|
7111 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
---|
7112 |
|
---|
7113 | #elif defined ( __CSMC__ )
|
---|
7114 | #define LOW_OPTIMIZATION_ENTER
|
---|
7115 | #define LOW_OPTIMIZATION_EXIT
|
---|
7116 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
---|
7117 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
---|
7118 |
|
---|
7119 | #elif defined ( __TASKING__ )
|
---|
7120 | #define LOW_OPTIMIZATION_ENTER
|
---|
7121 | #define LOW_OPTIMIZATION_EXIT
|
---|
7122 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
---|
7123 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
---|
7124 |
|
---|
7125 | #endif
|
---|
7126 |
|
---|
7127 |
|
---|
7128 | #ifdef __cplusplus
|
---|
7129 | }
|
---|
7130 | #endif
|
---|
7131 |
|
---|
7132 | /* Compiler specific diagnostic adjustment */
|
---|
7133 | #if defined ( __CC_ARM )
|
---|
7134 |
|
---|
7135 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
|
---|
7136 |
|
---|
7137 | #elif defined ( __GNUC__ )
|
---|
7138 | #pragma GCC diagnostic pop
|
---|
7139 |
|
---|
7140 | #elif defined ( __ICCARM__ )
|
---|
7141 |
|
---|
7142 | #elif defined ( __TI_ARM__ )
|
---|
7143 |
|
---|
7144 | #elif defined ( __CSMC__ )
|
---|
7145 |
|
---|
7146 | #elif defined ( __TASKING__ )
|
---|
7147 |
|
---|
7148 | #else
|
---|
7149 | #error Unknown compiler
|
---|
7150 | #endif
|
---|
7151 |
|
---|
7152 | #endif /* _ARM_MATH_H */
|
---|
7153 |
|
---|
7154 | /**
|
---|
7155 | *
|
---|
7156 | * End of file.
|
---|
7157 | */
|
---|