source: S-port/trunk/Drivers/CMSIS/DSP/Source/StatisticsFunctions/arm_var_q15.c

Last change on this file was 1, checked in by AlexLir, 3 years ago
File size: 5.6 KB
Line 
1/* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_var_q15.c
4 * Description: Variance of an array of Q15 type
5 *
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
8 *
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
11/*
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
13 *
14 * SPDX-License-Identifier: Apache-2.0
15 *
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
19 *
20 * www.apache.org/licenses/LICENSE-2.0
21 *
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
27 */
28
29#include "arm_math.h"
30
31/**
32 * @ingroup groupStats
33 */
34
35/**
36 * @addtogroup variance
37 * @{
38 */
39
40/**
41 * @brief Variance of the elements of a Q15 vector.
42 * @param[in] *pSrc points to the input vector
43 * @param[in] blockSize length of the input vector
44 * @param[out] *pResult variance value returned here
45 * @return none.
46 * @details
47 * <b>Scaling and Overflow Behavior:</b>
48 *
49 * \par
50 * The function is implemented using a 64-bit internal accumulator.
51 * The input is represented in 1.15 format.
52 * Intermediate multiplication yields a 2.30 format, and this
53 * result is added without saturation to a 64-bit accumulator in 34.30 format.
54 * With 33 guard bits in the accumulator, there is no risk of overflow, and the
55 * full precision of the intermediate multiplication is preserved.
56 * Finally, the 34.30 result is truncated to 34.15 format by discarding the lower
57 * 15 bits, and then saturated to yield a result in 1.15 format.
58 */
59
60void arm_var_q15(
61 q15_t * pSrc,
62 uint32_t blockSize,
63 q15_t * pResult)
64{
65 q31_t sum = 0; /* Accumulator */
66 q31_t meanOfSquares, squareOfMean; /* square of mean and mean of square */
67 uint32_t blkCnt; /* loop counter */
68 q63_t sumOfSquares = 0; /* Accumulator */
69#if defined (ARM_MATH_DSP)
70 q31_t in; /* input value */
71 q15_t in1; /* input value */
72#else
73 q15_t in; /* input value */
74#endif
75
76 if (blockSize == 1U)
77 {
78 *pResult = 0;
79 return;
80 }
81
82#if defined (ARM_MATH_DSP)
83 /* Run the below code for Cortex-M4 and Cortex-M3 */
84
85 /*loop Unrolling */
86 blkCnt = blockSize >> 2U;
87
88 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
89 ** a second loop below computes the remaining 1 to 3 samples. */
90 while (blkCnt > 0U)
91 {
92 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */
93 /* Compute Sum of squares of the input samples
94 * and then store the result in a temporary variable, sum. */
95 in = *__SIMD32(pSrc)++;
96 sum += ((in << 16U) >> 16U);
97 sum += (in >> 16U);
98 sumOfSquares = __SMLALD(in, in, sumOfSquares);
99 in = *__SIMD32(pSrc)++;
100 sum += ((in << 16U) >> 16U);
101 sum += (in >> 16U);
102 sumOfSquares = __SMLALD(in, in, sumOfSquares);
103
104 /* Decrement the loop counter */
105 blkCnt--;
106 }
107
108 /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
109 ** No loop unrolling is used. */
110 blkCnt = blockSize % 0x4U;
111
112 while (blkCnt > 0U)
113 {
114 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */
115 /* Compute Sum of squares of the input samples
116 * and then store the result in a temporary variable, sum. */
117 in1 = *pSrc++;
118 sumOfSquares = __SMLALD(in1, in1, sumOfSquares);
119 sum += in1;
120
121 /* Decrement the loop counter */
122 blkCnt--;
123 }
124
125 /* Compute Mean of squares of the input samples
126 * and then store the result in a temporary variable, meanOfSquares. */
127 meanOfSquares = (q31_t)(sumOfSquares / (q63_t)(blockSize - 1U));
128
129 /* Compute square of mean */
130 squareOfMean = (q31_t)((q63_t)sum * sum / (q63_t)(blockSize * (blockSize - 1U)));
131
132 /* mean of the squares minus the square of the mean. */
133 *pResult = (meanOfSquares - squareOfMean) >> 15U;
134
135#else
136 /* Run the below code for Cortex-M0 */
137
138 /* Loop over blockSize number of values */
139 blkCnt = blockSize;
140
141 while (blkCnt > 0U)
142 {
143 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */
144 /* Compute Sum of squares of the input samples
145 * and then store the result in a temporary variable, sumOfSquares. */
146 in = *pSrc++;
147 sumOfSquares += (in * in);
148
149 /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */
150 /* Compute sum of all input values and then store the result in a temporary variable, sum. */
151 sum += in;
152
153 /* Decrement the loop counter */
154 blkCnt--;
155 }
156
157 /* Compute Mean of squares of the input samples
158 * and then store the result in a temporary variable, meanOfSquares. */
159 meanOfSquares = (q31_t)(sumOfSquares / (q63_t)(blockSize - 1U));
160
161 /* Compute square of mean */
162 squareOfMean = (q31_t)((q63_t)sum * sum / (q63_t)(blockSize * (blockSize - 1U)));
163
164 /* mean of the squares minus the square of the mean. */
165 *pResult = (meanOfSquares - squareOfMean) >> 15;
166
167#endif /* #if defined (ARM_MATH_DSP) */
168}
169
170/**
171 * @} end of variance group
172 */
Note: See TracBrowser for help on using the repository browser.