1 | /**
|
---|
2 | ******************************************************************************
|
---|
3 | * @file stm32f4xx_hal_cryp.c
|
---|
4 | * @author MCD Application Team
|
---|
5 | * @brief CRYP HAL module driver.
|
---|
6 | * This file provides firmware functions to manage the following
|
---|
7 | * functionalities of the Cryptography (CRYP) peripheral:
|
---|
8 | * + Initialization, de-initialization, set config and get config functions
|
---|
9 | * + DES/TDES, AES processing functions
|
---|
10 | * + DMA callback functions
|
---|
11 | * + CRYP IRQ handler management
|
---|
12 | * + Peripheral State functions
|
---|
13 | *
|
---|
14 | @verbatim
|
---|
15 | ==============================================================================
|
---|
16 | ##### How to use this driver #####
|
---|
17 | ==============================================================================
|
---|
18 | [..]
|
---|
19 | The CRYP HAL driver can be used in CRYP or TinyAES IP as follows:
|
---|
20 |
|
---|
21 | (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
|
---|
22 | (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()or __HAL_RCC_AES_CLK_ENABLE for TinyAES IP
|
---|
23 | (##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT())
|
---|
24 | (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
|
---|
25 | (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
|
---|
26 | (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
|
---|
27 | (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA())
|
---|
28 | (+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE()
|
---|
29 | (+++) Configure and enable two DMA streams one for managing data transfer from
|
---|
30 | memory to peripheral (input stream) and another stream for managing data
|
---|
31 | transfer from peripheral to memory (output stream)
|
---|
32 | (+++) Associate the initialized DMA handle to the CRYP DMA handle
|
---|
33 | using __HAL_LINKDMA()
|
---|
34 | (+++) Configure the priority and enable the NVIC for the transfer complete
|
---|
35 | interrupt on the two DMA Streams. The output stream should have higher
|
---|
36 | priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
|
---|
37 |
|
---|
38 | (#)Initialize the CRYP according to the specified parameters :
|
---|
39 | (##) The data type: 1-bit, 8-bit, 16-bit or 32-bit.
|
---|
40 | (##) The key size: 128, 192 or 256.
|
---|
41 | (##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM.
|
---|
42 | (##) The initialization vector (counter). It is not used in ECB mode.
|
---|
43 | (##) The key buffer used for encryption/decryption.
|
---|
44 | (##) The Header used only in AES GCM and CCM Algorithm for authentication.
|
---|
45 | (##) The HeaderSize The size of header buffer in word.
|
---|
46 | (##) The B0 block is the first authentication block used only in AES CCM mode.
|
---|
47 |
|
---|
48 | (#)Three processing (encryption/decryption) functions are available:
|
---|
49 | (##) Polling mode: encryption and decryption APIs are blocking functions
|
---|
50 | i.e. they process the data and wait till the processing is finished,
|
---|
51 | e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
|
---|
52 | (##) Interrupt mode: encryption and decryption APIs are not blocking functions
|
---|
53 | i.e. they process the data under interrupt,
|
---|
54 | e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
|
---|
55 | (##) DMA mode: encryption and decryption APIs are not blocking functions
|
---|
56 | i.e. the data transfer is ensured by DMA,
|
---|
57 | e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
|
---|
58 |
|
---|
59 | (#)When the processing function is called at first time after HAL_CRYP_Init()
|
---|
60 | the CRYP peripheral is configured and processes the buffer in input.
|
---|
61 | At second call, no need to Initialize the CRYP, user have to get current configuration via
|
---|
62 | HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set
|
---|
63 | new parametres, finally user can start encryption/decryption.
|
---|
64 |
|
---|
65 | (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
|
---|
66 |
|
---|
67 | (#)To process a single message with consecutive calls to HAL_CRYP_Encrypt() or HAL_CRYP_Decrypt()
|
---|
68 | without having to configure again the Key or the Initialization Vector between each API call,
|
---|
69 | the field KeyIVConfigSkip of the initialization structure must be set to CRYP_KEYIVCONFIG_ONCE.
|
---|
70 | Same is true for consecutive calls of HAL_CRYP_Encrypt_IT(), HAL_CRYP_Decrypt_IT(), HAL_CRYP_Encrypt_DMA()
|
---|
71 | or HAL_CRYP_Decrypt_DMA().
|
---|
72 |
|
---|
73 | [..]
|
---|
74 | The cryptographic processor supports following standards:
|
---|
75 | (#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 IP:
|
---|
76 | (##)64-bit data block processing
|
---|
77 | (##) chaining modes supported :
|
---|
78 | (+++) Electronic Code Book(ECB)
|
---|
79 | (+++) Cipher Block Chaining (CBC)
|
---|
80 | (##) keys length supported :64-bit, 128-bit and 192-bit.
|
---|
81 | (#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES IP:
|
---|
82 | (##)128-bit data block processing
|
---|
83 | (##) chaining modes supported :
|
---|
84 | (+++) Electronic Code Book(ECB)
|
---|
85 | (+++) Cipher Block Chaining (CBC)
|
---|
86 | (+++) Counter mode (CTR)
|
---|
87 | (+++) Galois/counter mode (GCM/GMAC)
|
---|
88 | (+++) Counter with Cipher Block Chaining-Message(CCM)
|
---|
89 | (##) keys length Supported :
|
---|
90 | (+++) for CRYP1 IP: 128-bit, 192-bit and 256-bit.
|
---|
91 | (+++) for TinyAES IP: 128-bit and 256-bit
|
---|
92 |
|
---|
93 | [..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 IP:
|
---|
94 | (#) Algorithm supported :
|
---|
95 | (##) Galois/counter mode (GCM)
|
---|
96 | (##) Galois message authentication code (GMAC) :is exactly the same as
|
---|
97 | GCM algorithm composed only by an header.
|
---|
98 | (#) Four phases are performed in GCM :
|
---|
99 | (##) Init phase: IP prepares the GCM hash subkey (H) and do the IV processing
|
---|
100 | (##) Header phase: IP processes the Additional Authenticated Data (AAD), with hash
|
---|
101 | computation only.
|
---|
102 | (##) Payload phase: IP processes the plaintext (P) with hash computation + keystream
|
---|
103 | encryption + data XORing. It works in a similar way for ciphertext (C).
|
---|
104 | (##) Final phase: IP generates the authenticated tag (T) using the last block of data.
|
---|
105 | (#) structure of message construction in GCM is defined as below :
|
---|
106 | (##) 16 bytes Initial Counter Block (ICB)composed of IV and counter
|
---|
107 | (##) The authenticated header A (also knows as Additional Authentication Data AAD)
|
---|
108 | this part of the message is only authenticated, not encrypted.
|
---|
109 | (##) The plaintext message P is both authenticated and encrypted as ciphertext.
|
---|
110 | GCM standard specifies that ciphertext has same bit length as the plaintext.
|
---|
111 | (##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext
|
---|
112 | (on 64 bits)
|
---|
113 |
|
---|
114 | [..] This section describe The AES Counter with Cipher Block Chaining-Message
|
---|
115 | Authentication Code (CCM) supported by both CRYP1 IP:
|
---|
116 | (#) Specific parameters for CCM :
|
---|
117 |
|
---|
118 | (##) B0 block : According to NIST Special Publication 800-38C,
|
---|
119 | The first block B0 is formatted as follows, where l(m) is encoded in
|
---|
120 | most-significant-byte first order(see below table 3)
|
---|
121 |
|
---|
122 | (+++) Q: a bit string representation of the octet length of P (plaintext)
|
---|
123 | (+++) q The octet length of the binary representation of the octet length of the payload
|
---|
124 | (+++) A nonce (N), n The octet length of the where n+q=15.
|
---|
125 | (+++) Flags: most significant octet containing four flags for control information,
|
---|
126 | (+++) t The octet length of the MAC.
|
---|
127 | (##) B1 block (header) : associated data length(a) concatenated with Associated Data (A)
|
---|
128 | the associated data length expressed in bytes (a) defined as below:
|
---|
129 | (+++) If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets
|
---|
130 | (+++) If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets
|
---|
131 | (+++) If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets
|
---|
132 | (##) CTRx block : control blocks
|
---|
133 | (+++) Generation of CTR1 from first block B0 information :
|
---|
134 | equal to B0 with first 5 bits zeroed and most significant bits storing octet
|
---|
135 | length of P also zeroed, then incremented by one ( see below Table 4)
|
---|
136 | (+++) Generation of CTR0: same as CTR1 with bit[0] set to zero.
|
---|
137 |
|
---|
138 | (#) Four phases are performed in CCM for CRYP1 IP:
|
---|
139 | (##) Init phase: IP prepares the GCM hash subkey (H) and do the IV processing
|
---|
140 | (##) Header phase: IP processes the Additional Authenticated Data (AAD), with hash
|
---|
141 | computation only.
|
---|
142 | (##) Payload phase: IP processes the plaintext (P) with hash computation + keystream
|
---|
143 | encryption + data XORing. It works in a similar way for ciphertext (C).
|
---|
144 | (##) Final phase: IP generates the authenticated tag (T) using the last block of data.
|
---|
145 |
|
---|
146 | *** Callback registration ***
|
---|
147 | =============================================
|
---|
148 |
|
---|
149 | The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1
|
---|
150 | allows the user to configure dynamically the driver callbacks.
|
---|
151 | Use Functions @ref HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback()
|
---|
152 | to register an interrupt callback.
|
---|
153 |
|
---|
154 | Function @ref HAL_CRYP_RegisterCallback() allows to register following callbacks:
|
---|
155 | (+) InCpltCallback : Input FIFO transfer completed callback.
|
---|
156 | (+) OutCpltCallback : Output FIFO transfer completed callback.
|
---|
157 | (+) ErrorCallback : callback for error detection.
|
---|
158 | (+) MspInitCallback : CRYP MspInit.
|
---|
159 | (+) MspDeInitCallback : CRYP MspDeInit.
|
---|
160 | This function takes as parameters the HAL peripheral handle, the Callback ID
|
---|
161 | and a pointer to the user callback function.
|
---|
162 |
|
---|
163 | Use function @ref HAL_CRYP_UnRegisterCallback() to reset a callback to the default
|
---|
164 | weak function.
|
---|
165 | @ref HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle,
|
---|
166 | and the Callback ID.
|
---|
167 | This function allows to reset following callbacks:
|
---|
168 | (+) InCpltCallback : Input FIFO transfer completed callback.
|
---|
169 | (+) OutCpltCallback : Output FIFO transfer completed callback.
|
---|
170 | (+) ErrorCallback : callback for error detection.
|
---|
171 | (+) MspInitCallback : CRYP MspInit.
|
---|
172 | (+) MspDeInitCallback : CRYP MspDeInit.
|
---|
173 |
|
---|
174 | By default, after the @ref HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET
|
---|
175 | all callbacks are set to the corresponding weak functions :
|
---|
176 | examples @ref HAL_CRYP_InCpltCallback() , @ref HAL_CRYP_OutCpltCallback().
|
---|
177 | Exception done for MspInit and MspDeInit functions that are
|
---|
178 | reset to the legacy weak function in the @ref HAL_CRYP_Init()/ @ref HAL_CRYP_DeInit() only when
|
---|
179 | these callbacks are null (not registered beforehand).
|
---|
180 | if not, MspInit or MspDeInit are not null, the @ref HAL_CRYP_Init() / @ref HAL_CRYP_DeInit()
|
---|
181 | keep and use the user MspInit/MspDeInit functions (registered beforehand)
|
---|
182 |
|
---|
183 | Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only.
|
---|
184 | Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
|
---|
185 | in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state,
|
---|
186 | thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
|
---|
187 | In that case first register the MspInit/MspDeInit user callbacks
|
---|
188 | using @ref HAL_CRYP_RegisterCallback() before calling @ref HAL_CRYP_DeInit()
|
---|
189 | or @ref HAL_CRYP_Init() function.
|
---|
190 |
|
---|
191 | When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or
|
---|
192 | not defined, the callback registration feature is not available and all callbacks
|
---|
193 | are set to the corresponding weak functions.
|
---|
194 |
|
---|
195 | Table 1. Initial Counter Block (ICB)
|
---|
196 | +-------------------------------------------------------+
|
---|
197 | | Initialization vector (IV) | Counter |
|
---|
198 | |----------------|----------------|-----------|---------|
|
---|
199 | 127 95 63 31 0
|
---|
200 |
|
---|
201 |
|
---|
202 | Bit Number Register Contents
|
---|
203 | ---------- --------------- -----------
|
---|
204 | 127 ...96 CRYP_IV1R[31:0] ICB[127:96]
|
---|
205 | 95 ...64 CRYP_IV1L[31:0] B0[95:64]
|
---|
206 | 63 ... 32 CRYP_IV0R[31:0] ICB[63:32]
|
---|
207 | 31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2
|
---|
208 |
|
---|
209 | Table 2. GCM last block definition
|
---|
210 |
|
---|
211 | +-------------------------------------------------------------------+
|
---|
212 | | Bit[0] | Bit[32] | Bit[64] | Bit[96] |
|
---|
213 | |-----------|--------------------|-----------|----------------------|
|
---|
214 | | 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] |
|
---|
215 | |-----------|--------------------|-----------|----------------------|
|
---|
216 |
|
---|
217 | Table 3. B0 block
|
---|
218 | Octet Number Contents
|
---|
219 | ------------ ---------
|
---|
220 | 0 Flags
|
---|
221 | 1 ... 15-q Nonce N
|
---|
222 | 16-q ... 15 Q
|
---|
223 |
|
---|
224 | the Flags field is formatted as follows:
|
---|
225 |
|
---|
226 | Bit Number Contents
|
---|
227 | ---------- ----------------------
|
---|
228 | 7 Reserved (always zero)
|
---|
229 | 6 Adata
|
---|
230 | 5 ... 3 (t-2)/2
|
---|
231 | 2 ... 0 [q-1]3
|
---|
232 |
|
---|
233 | Table 4. CTRx block
|
---|
234 | Bit Number Register Contents
|
---|
235 | ---------- --------------- -----------
|
---|
236 | 127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for
|
---|
237 | bit 0 that is set to 1
|
---|
238 | 95 ...64 CRYP_IV1L[31:0] B0[95:64]
|
---|
239 | 63 ... 32 CRYP_IV0R[31:0] B0[63:32]
|
---|
240 | 31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0
|
---|
241 |
|
---|
242 | @endverbatim
|
---|
243 | ******************************************************************************
|
---|
244 | * @attention
|
---|
245 | *
|
---|
246 | * <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
---|
247 | * All rights reserved.</center></h2>
|
---|
248 | *
|
---|
249 | * This software component is licensed by ST under BSD 3-Clause license,
|
---|
250 | * the "License"; You may not use this file except in compliance with the
|
---|
251 | * License. You may obtain a copy of the License at:
|
---|
252 | * opensource.org/licenses/BSD-3-Clause
|
---|
253 | *
|
---|
254 | ******************************************************************************
|
---|
255 | */
|
---|
256 |
|
---|
257 | /* Includes ------------------------------------------------------------------*/
|
---|
258 | #include "stm32f4xx_hal.h"
|
---|
259 |
|
---|
260 | /** @addtogroup STM32F4xx_HAL_Driver
|
---|
261 | * @{
|
---|
262 | */
|
---|
263 |
|
---|
264 | #if defined (AES) || defined (CRYP)
|
---|
265 |
|
---|
266 | /** @defgroup CRYP CRYP
|
---|
267 | * @brief CRYP HAL module driver.
|
---|
268 | * @{
|
---|
269 | */
|
---|
270 |
|
---|
271 |
|
---|
272 | #ifdef HAL_CRYP_MODULE_ENABLED
|
---|
273 |
|
---|
274 | /* Private typedef -----------------------------------------------------------*/
|
---|
275 | /* Private define ------------------------------------------------------------*/
|
---|
276 | /** @addtogroup CRYP_Private_Defines
|
---|
277 | * @{
|
---|
278 | */
|
---|
279 | #define CRYP_TIMEOUT_KEYPREPARATION 82U /*The latency of key preparation operation is 82 clock cycles.*/
|
---|
280 | #define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey is 299 clock cycles.*/
|
---|
281 | #define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/
|
---|
282 |
|
---|
283 | #define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */
|
---|
284 | #define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */
|
---|
285 |
|
---|
286 | #if defined(AES)
|
---|
287 | #define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */
|
---|
288 | #define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */
|
---|
289 | #define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */
|
---|
290 | #define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */
|
---|
291 | #define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
|
---|
292 | #define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */
|
---|
293 | #define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */
|
---|
294 | #define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */
|
---|
295 | #else /* CRYP */
|
---|
296 | #define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
|
---|
297 | #define CRYP_PHASE_HEADER CRYP_CR_GCM_CCMPH_0 /*!< GCM/GMAC or CCM header phase */
|
---|
298 | #define CRYP_PHASE_PAYLOAD CRYP_CR_GCM_CCMPH_1 /*!< GCM(/CCM) payload phase */
|
---|
299 | #define CRYP_PHASE_FINAL CRYP_CR_GCM_CCMPH /*!< GCM/GMAC or CCM final phase */
|
---|
300 | #define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode */
|
---|
301 | #define CRYP_OPERATINGMODE_DECRYPT CRYP_CR_ALGODIR /*!< Decryption */
|
---|
302 | #endif /* End CRYP or AES */
|
---|
303 |
|
---|
304 | /* CTR1 information to use in CCM algorithm */
|
---|
305 | #define CRYP_CCM_CTR1_0 0x07FFFFFFU
|
---|
306 | #define CRYP_CCM_CTR1_1 0xFFFFFF00U
|
---|
307 | #define CRYP_CCM_CTR1_2 0x00000001U
|
---|
308 |
|
---|
309 |
|
---|
310 | /**
|
---|
311 | * @}
|
---|
312 | */
|
---|
313 |
|
---|
314 |
|
---|
315 | /* Private macro -------------------------------------------------------------*/
|
---|
316 | /** @addtogroup CRYP_Private_Macros
|
---|
317 | * @{
|
---|
318 | */
|
---|
319 |
|
---|
320 | #if defined(CRYP)
|
---|
321 |
|
---|
322 | #define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~CRYP_CR_GCM_CCMPH);\
|
---|
323 | (__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
|
---|
324 | }while(0)
|
---|
325 |
|
---|
326 | #define HAL_CRYP_FIFO_FLUSH(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRYP_CR_FFLUSH)
|
---|
327 |
|
---|
328 | #else /*AES*/
|
---|
329 | #define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~AES_CR_GCMPH);\
|
---|
330 | (__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\
|
---|
331 | }while(0)
|
---|
332 | #endif /* End AES or CRYP*/
|
---|
333 |
|
---|
334 |
|
---|
335 | /**
|
---|
336 | * @}
|
---|
337 | */
|
---|
338 |
|
---|
339 | /* Private struct -------------------------------------------------------------*/
|
---|
340 | /* Private variables ---------------------------------------------------------*/
|
---|
341 | /* Private function prototypes -----------------------------------------------*/
|
---|
342 | /** @addtogroup CRYP_Private_Functions_prototypes
|
---|
343 | * @{
|
---|
344 | */
|
---|
345 |
|
---|
346 | static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
|
---|
347 | static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
|
---|
348 | static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
|
---|
349 | static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
|
---|
350 | static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize);
|
---|
351 | static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
|
---|
352 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)|| defined (AES)
|
---|
353 | static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
354 | static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp);
|
---|
355 | static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp);
|
---|
356 | static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp);
|
---|
357 | static void CRYP_Workaround(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
358 | static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
|
---|
359 | static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp);
|
---|
360 | static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
361 | static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
362 | static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp);
|
---|
363 | static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
|
---|
364 | #endif /* AES or GCM CCM defined*/
|
---|
365 | static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout);
|
---|
366 | static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
367 | static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
368 | static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp);
|
---|
369 | static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp);
|
---|
370 | static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp);
|
---|
371 | #if defined (CRYP)
|
---|
372 | static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp);
|
---|
373 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
374 | static HAL_StatusTypeDef CRYP_WaitOnIFEMFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
375 | #endif /* GCM CCM defined*/
|
---|
376 | static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
377 | static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
378 | static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
379 | #else /*AES*/
|
---|
380 | static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
---|
381 | #endif /* End CRYP or AES */
|
---|
382 |
|
---|
383 | /**
|
---|
384 | * @}
|
---|
385 | */
|
---|
386 |
|
---|
387 | /* Exported functions ---------------------------------------------------------*/
|
---|
388 |
|
---|
389 | /** @defgroup CRYP_Exported_Functions CRYP Exported Functions
|
---|
390 | * @{
|
---|
391 | */
|
---|
392 |
|
---|
393 |
|
---|
394 | /** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
|
---|
395 | * @brief Initialization and Configuration functions.
|
---|
396 | *
|
---|
397 | @verbatim
|
---|
398 | ========================================================================================
|
---|
399 | ##### Initialization, de-initialization and Set and Get configuration functions #####
|
---|
400 | ========================================================================================
|
---|
401 | [..] This section provides functions allowing to:
|
---|
402 | (+) Initialize the CRYP
|
---|
403 | (+) DeInitialize the CRYP
|
---|
404 | (+) Initialize the CRYP MSP
|
---|
405 | (+) DeInitialize the CRYP MSP
|
---|
406 | (+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef
|
---|
407 | Parameters which are configured in This section are :
|
---|
408 | (+) Key size
|
---|
409 | (+) Data Type : 32,16, 8 or 1bit
|
---|
410 | (+) AlgoMode :
|
---|
411 | - for CRYP1 IP :
|
---|
412 | ECB and CBC in DES/TDES Standard
|
---|
413 | ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard.
|
---|
414 | - for TinyAES2 IP, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported.
|
---|
415 | (+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef
|
---|
416 |
|
---|
417 |
|
---|
418 | @endverbatim
|
---|
419 | * @{
|
---|
420 | */
|
---|
421 |
|
---|
422 |
|
---|
423 | /**
|
---|
424 | * @brief Initializes the CRYP according to the specified
|
---|
425 | * parameters in the CRYP_ConfigTypeDef and creates the associated handle.
|
---|
426 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
427 | * the configuration information for CRYP module
|
---|
428 | * @retval HAL status
|
---|
429 | */
|
---|
430 | HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
|
---|
431 | {
|
---|
432 | /* Check the CRYP handle allocation */
|
---|
433 | if (hcryp == NULL)
|
---|
434 | {
|
---|
435 | return HAL_ERROR;
|
---|
436 | }
|
---|
437 |
|
---|
438 | /* Check parameters */
|
---|
439 | assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
|
---|
440 | assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
|
---|
441 | assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm));
|
---|
442 | assert_param(IS_CRYP_INIT(hcryp->Init.KeyIVConfigSkip));
|
---|
443 |
|
---|
444 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
445 | if (hcryp->State == HAL_CRYP_STATE_RESET)
|
---|
446 | {
|
---|
447 | /* Allocate lock resource and initialize it */
|
---|
448 | hcryp->Lock = HAL_UNLOCKED;
|
---|
449 |
|
---|
450 | hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
|
---|
451 | hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
|
---|
452 | hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
|
---|
453 |
|
---|
454 | if (hcryp->MspInitCallback == NULL)
|
---|
455 | {
|
---|
456 | hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */
|
---|
457 | }
|
---|
458 |
|
---|
459 | /* Init the low level hardware */
|
---|
460 | hcryp->MspInitCallback(hcryp);
|
---|
461 | }
|
---|
462 | #else
|
---|
463 | if (hcryp->State == HAL_CRYP_STATE_RESET)
|
---|
464 | {
|
---|
465 | /* Allocate lock resource and initialize it */
|
---|
466 | hcryp->Lock = HAL_UNLOCKED;
|
---|
467 |
|
---|
468 | /* Init the low level hardware */
|
---|
469 | HAL_CRYP_MspInit(hcryp);
|
---|
470 | }
|
---|
471 | #endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */
|
---|
472 |
|
---|
473 | /* Set the key size(This bit field is dont care in the DES or TDES modes) data type and Algorithm */
|
---|
474 | #if defined (CRYP)
|
---|
475 |
|
---|
476 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE | CRYP_CR_KEYSIZE | CRYP_CR_ALGOMODE,
|
---|
477 | hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
---|
478 |
|
---|
479 | #else /*AES*/
|
---|
480 |
|
---|
481 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
|
---|
482 | hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
---|
483 |
|
---|
484 | #endif /* End AES or CRYP*/
|
---|
485 |
|
---|
486 | /* Reset Error Code field */
|
---|
487 | hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
|
---|
488 |
|
---|
489 | /* Change the CRYP state */
|
---|
490 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
491 |
|
---|
492 | /* Set the default CRYP phase */
|
---|
493 | hcryp->Phase = CRYP_PHASE_READY;
|
---|
494 |
|
---|
495 | /* Return function status */
|
---|
496 | return HAL_OK;
|
---|
497 | }
|
---|
498 |
|
---|
499 | /**
|
---|
500 | * @brief De-Initializes the CRYP peripheral.
|
---|
501 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
502 | * the configuration information for CRYP module
|
---|
503 | * @retval HAL status
|
---|
504 | */
|
---|
505 | HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
|
---|
506 | {
|
---|
507 | /* Check the CRYP handle allocation */
|
---|
508 | if (hcryp == NULL)
|
---|
509 | {
|
---|
510 | return HAL_ERROR;
|
---|
511 | }
|
---|
512 |
|
---|
513 | /* Set the default CRYP phase */
|
---|
514 | hcryp->Phase = CRYP_PHASE_READY;
|
---|
515 |
|
---|
516 | /* Reset CrypInCount and CrypOutCount */
|
---|
517 | hcryp->CrypInCount = 0;
|
---|
518 | hcryp->CrypOutCount = 0;
|
---|
519 | hcryp->CrypHeaderCount = 0;
|
---|
520 |
|
---|
521 | /* Disable the CRYP peripheral clock */
|
---|
522 | __HAL_CRYP_DISABLE(hcryp);
|
---|
523 |
|
---|
524 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
525 |
|
---|
526 | if (hcryp->MspDeInitCallback == NULL)
|
---|
527 | {
|
---|
528 | hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */
|
---|
529 | }
|
---|
530 | /* DeInit the low level hardware */
|
---|
531 | hcryp->MspDeInitCallback(hcryp);
|
---|
532 |
|
---|
533 | #else
|
---|
534 |
|
---|
535 | /* DeInit the low level hardware: CLOCK, NVIC.*/
|
---|
536 | HAL_CRYP_MspDeInit(hcryp);
|
---|
537 |
|
---|
538 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
539 |
|
---|
540 | /* Change the CRYP state */
|
---|
541 | hcryp->State = HAL_CRYP_STATE_RESET;
|
---|
542 |
|
---|
543 | /* Release Lock */
|
---|
544 | __HAL_UNLOCK(hcryp);
|
---|
545 |
|
---|
546 | /* Return function status */
|
---|
547 | return HAL_OK;
|
---|
548 | }
|
---|
549 |
|
---|
550 | /**
|
---|
551 | * @brief Configure the CRYP according to the specified
|
---|
552 | * parameters in the CRYP_ConfigTypeDef
|
---|
553 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
---|
554 | * @param pConf: pointer to a CRYP_ConfigTypeDef structure that contains
|
---|
555 | * the configuration information for CRYP module
|
---|
556 | * @retval HAL status
|
---|
557 | */
|
---|
558 | HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
|
---|
559 | {
|
---|
560 | /* Check the CRYP handle allocation */
|
---|
561 | if ((hcryp == NULL) || (pConf == NULL))
|
---|
562 | {
|
---|
563 | return HAL_ERROR;
|
---|
564 | }
|
---|
565 |
|
---|
566 | /* Check parameters */
|
---|
567 | assert_param(IS_CRYP_KEYSIZE(pConf->KeySize));
|
---|
568 | assert_param(IS_CRYP_DATATYPE(pConf->DataType));
|
---|
569 | assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm));
|
---|
570 |
|
---|
571 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
572 | {
|
---|
573 | /* Change the CRYP state */
|
---|
574 | hcryp->State = HAL_CRYP_STATE_BUSY;
|
---|
575 |
|
---|
576 | /* Process locked */
|
---|
577 | __HAL_LOCK(hcryp);
|
---|
578 |
|
---|
579 | /* Set CRYP parameters */
|
---|
580 | hcryp->Init.DataType = pConf->DataType;
|
---|
581 | hcryp->Init.pKey = pConf->pKey;
|
---|
582 | hcryp->Init.Algorithm = pConf->Algorithm;
|
---|
583 | hcryp->Init.KeySize = pConf->KeySize;
|
---|
584 | hcryp->Init.pInitVect = pConf->pInitVect;
|
---|
585 | hcryp->Init.Header = pConf->Header;
|
---|
586 | hcryp->Init.HeaderSize = pConf->HeaderSize;
|
---|
587 | hcryp->Init.B0 = pConf->B0;
|
---|
588 | hcryp->Init.DataWidthUnit = pConf->DataWidthUnit;
|
---|
589 | hcryp->Init.KeyIVConfigSkip = pConf->KeyIVConfigSkip;
|
---|
590 | hcryp->Init.HeaderWidthUnit = pConf->HeaderWidthUnit;
|
---|
591 |
|
---|
592 | /* Set the key size(This bit field is dont care in the DES or TDES modes) data type, AlgoMode and operating mode*/
|
---|
593 | #if defined (CRYP)
|
---|
594 |
|
---|
595 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_DATATYPE | CRYP_CR_KEYSIZE | CRYP_CR_ALGOMODE,
|
---|
596 | hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
---|
597 |
|
---|
598 | #else /*AES*/
|
---|
599 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
|
---|
600 | hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
---|
601 |
|
---|
602 | /*clear error flags*/
|
---|
603 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR);
|
---|
604 |
|
---|
605 | #endif /* End AES or CRYP */
|
---|
606 |
|
---|
607 | /* Process Unlocked */
|
---|
608 | __HAL_UNLOCK(hcryp);
|
---|
609 |
|
---|
610 | /* Reset Error Code field */
|
---|
611 | hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
|
---|
612 |
|
---|
613 | /* Change the CRYP state */
|
---|
614 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
615 |
|
---|
616 | /* Set the default CRYP phase */
|
---|
617 | hcryp->Phase = CRYP_PHASE_READY;
|
---|
618 |
|
---|
619 | /* Return function status */
|
---|
620 | return HAL_OK;
|
---|
621 | }
|
---|
622 | else
|
---|
623 | {
|
---|
624 | /* Process Unlocked */
|
---|
625 | __HAL_UNLOCK(hcryp);
|
---|
626 |
|
---|
627 | /* Busy error code field */
|
---|
628 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
629 | return HAL_ERROR;
|
---|
630 | }
|
---|
631 | }
|
---|
632 |
|
---|
633 | /**
|
---|
634 | * @brief Get CRYP Configuration parameters in associated handle.
|
---|
635 | * @param pConf: pointer to a CRYP_ConfigTypeDef structure
|
---|
636 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
637 | * the configuration information for CRYP module
|
---|
638 | * @retval HAL status
|
---|
639 | */
|
---|
640 | HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
|
---|
641 | {
|
---|
642 | /* Check the CRYP handle allocation */
|
---|
643 | if ((hcryp == NULL) || (pConf == NULL))
|
---|
644 | {
|
---|
645 | return HAL_ERROR;
|
---|
646 | }
|
---|
647 |
|
---|
648 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
649 | {
|
---|
650 | /* Change the CRYP state */
|
---|
651 | hcryp->State = HAL_CRYP_STATE_BUSY;
|
---|
652 |
|
---|
653 | /* Process locked */
|
---|
654 | __HAL_LOCK(hcryp);
|
---|
655 |
|
---|
656 | /* Get CRYP parameters */
|
---|
657 | pConf->DataType = hcryp->Init.DataType;
|
---|
658 | pConf->pKey = hcryp->Init.pKey;
|
---|
659 | pConf->Algorithm = hcryp->Init.Algorithm;
|
---|
660 | pConf->KeySize = hcryp->Init.KeySize ;
|
---|
661 | pConf->pInitVect = hcryp->Init.pInitVect;
|
---|
662 | pConf->Header = hcryp->Init.Header ;
|
---|
663 | pConf->HeaderSize = hcryp->Init.HeaderSize;
|
---|
664 | pConf->B0 = hcryp->Init.B0;
|
---|
665 | pConf->DataWidthUnit = hcryp->Init.DataWidthUnit;
|
---|
666 | pConf->KeyIVConfigSkip = hcryp->Init.KeyIVConfigSkip;
|
---|
667 | pConf->HeaderWidthUnit = hcryp->Init.HeaderWidthUnit;
|
---|
668 |
|
---|
669 | /* Process Unlocked */
|
---|
670 | __HAL_UNLOCK(hcryp);
|
---|
671 |
|
---|
672 | /* Change the CRYP state */
|
---|
673 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
674 |
|
---|
675 | /* Return function status */
|
---|
676 | return HAL_OK;
|
---|
677 | }
|
---|
678 | else
|
---|
679 | {
|
---|
680 | /* Process Unlocked */
|
---|
681 | __HAL_UNLOCK(hcryp);
|
---|
682 |
|
---|
683 | /* Busy error code field */
|
---|
684 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
685 | return HAL_ERROR;
|
---|
686 | }
|
---|
687 | }
|
---|
688 | /**
|
---|
689 | * @brief Initializes the CRYP MSP.
|
---|
690 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
691 | * the configuration information for CRYP module
|
---|
692 | * @retval None
|
---|
693 | */
|
---|
694 | __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
|
---|
695 | {
|
---|
696 | /* Prevent unused argument(s) compilation warning */
|
---|
697 | UNUSED(hcryp);
|
---|
698 |
|
---|
699 | /* NOTE : This function should not be modified, when the callback is needed,
|
---|
700 | the HAL_CRYP_MspInit can be implemented in the user file
|
---|
701 | */
|
---|
702 | }
|
---|
703 |
|
---|
704 | /**
|
---|
705 | * @brief DeInitializes CRYP MSP.
|
---|
706 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
707 | * the configuration information for CRYP module
|
---|
708 | * @retval None
|
---|
709 | */
|
---|
710 | __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
|
---|
711 | {
|
---|
712 | /* Prevent unused argument(s) compilation warning */
|
---|
713 | UNUSED(hcryp);
|
---|
714 |
|
---|
715 | /* NOTE : This function should not be modified, when the callback is needed,
|
---|
716 | the HAL_CRYP_MspDeInit can be implemented in the user file
|
---|
717 | */
|
---|
718 | }
|
---|
719 |
|
---|
720 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
721 | /**
|
---|
722 | * @brief Register a User CRYP Callback
|
---|
723 | * To be used instead of the weak predefined callback
|
---|
724 | * @param hcryp cryp handle
|
---|
725 | * @param CallbackID ID of the callback to be registered
|
---|
726 | * This parameter can be one of the following values:
|
---|
727 | * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
|
---|
728 | * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
|
---|
729 | * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
|
---|
730 | * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
|
---|
731 | * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
|
---|
732 | * @param pCallback pointer to the Callback function
|
---|
733 | * @retval status
|
---|
734 | */
|
---|
735 | HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID,
|
---|
736 | pCRYP_CallbackTypeDef pCallback)
|
---|
737 | {
|
---|
738 | HAL_StatusTypeDef status = HAL_OK;
|
---|
739 |
|
---|
740 | if (pCallback == NULL)
|
---|
741 | {
|
---|
742 | /* Update the error code */
|
---|
743 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
---|
744 |
|
---|
745 | return HAL_ERROR;
|
---|
746 | }
|
---|
747 | /* Process locked */
|
---|
748 | __HAL_LOCK(hcryp);
|
---|
749 |
|
---|
750 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
751 | {
|
---|
752 | switch (CallbackID)
|
---|
753 | {
|
---|
754 | case HAL_CRYP_INPUT_COMPLETE_CB_ID :
|
---|
755 | hcryp->InCpltCallback = pCallback;
|
---|
756 | break;
|
---|
757 |
|
---|
758 | case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
|
---|
759 | hcryp->OutCpltCallback = pCallback;
|
---|
760 | break;
|
---|
761 |
|
---|
762 | case HAL_CRYP_ERROR_CB_ID :
|
---|
763 | hcryp->ErrorCallback = pCallback;
|
---|
764 | break;
|
---|
765 |
|
---|
766 | case HAL_CRYP_MSPINIT_CB_ID :
|
---|
767 | hcryp->MspInitCallback = pCallback;
|
---|
768 | break;
|
---|
769 |
|
---|
770 | case HAL_CRYP_MSPDEINIT_CB_ID :
|
---|
771 | hcryp->MspDeInitCallback = pCallback;
|
---|
772 | break;
|
---|
773 |
|
---|
774 | default :
|
---|
775 | /* Update the error code */
|
---|
776 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
---|
777 | /* Return error status */
|
---|
778 | status = HAL_ERROR;
|
---|
779 | break;
|
---|
780 | }
|
---|
781 | }
|
---|
782 | else if (hcryp->State == HAL_CRYP_STATE_RESET)
|
---|
783 | {
|
---|
784 | switch (CallbackID)
|
---|
785 | {
|
---|
786 | case HAL_CRYP_MSPINIT_CB_ID :
|
---|
787 | hcryp->MspInitCallback = pCallback;
|
---|
788 | break;
|
---|
789 |
|
---|
790 | case HAL_CRYP_MSPDEINIT_CB_ID :
|
---|
791 | hcryp->MspDeInitCallback = pCallback;
|
---|
792 | break;
|
---|
793 |
|
---|
794 | default :
|
---|
795 | /* Update the error code */
|
---|
796 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
---|
797 | /* Return error status */
|
---|
798 | status = HAL_ERROR;
|
---|
799 | break;
|
---|
800 | }
|
---|
801 | }
|
---|
802 | else
|
---|
803 | {
|
---|
804 | /* Update the error code */
|
---|
805 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
---|
806 | /* Return error status */
|
---|
807 | status = HAL_ERROR;
|
---|
808 | }
|
---|
809 |
|
---|
810 | /* Release Lock */
|
---|
811 | __HAL_UNLOCK(hcryp);
|
---|
812 |
|
---|
813 | return status;
|
---|
814 | }
|
---|
815 |
|
---|
816 | /**
|
---|
817 | * @brief Unregister an CRYP Callback
|
---|
818 | * CRYP callback is redirected to the weak predefined callback
|
---|
819 | * @param hcryp cryp handle
|
---|
820 | * @param CallbackID ID of the callback to be unregistered
|
---|
821 | * This parameter can be one of the following values:
|
---|
822 | * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
|
---|
823 | * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
|
---|
824 | * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
|
---|
825 | * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
|
---|
826 | * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
|
---|
827 | * @retval status
|
---|
828 | */
|
---|
829 | HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID)
|
---|
830 | {
|
---|
831 | HAL_StatusTypeDef status = HAL_OK;
|
---|
832 |
|
---|
833 | /* Process locked */
|
---|
834 | __HAL_LOCK(hcryp);
|
---|
835 |
|
---|
836 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
837 | {
|
---|
838 | switch (CallbackID)
|
---|
839 | {
|
---|
840 | case HAL_CRYP_INPUT_COMPLETE_CB_ID :
|
---|
841 | hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
|
---|
842 | break;
|
---|
843 |
|
---|
844 | case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
|
---|
845 | hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
|
---|
846 | break;
|
---|
847 |
|
---|
848 | case HAL_CRYP_ERROR_CB_ID :
|
---|
849 | hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
|
---|
850 | break;
|
---|
851 |
|
---|
852 | case HAL_CRYP_MSPINIT_CB_ID :
|
---|
853 | hcryp->MspInitCallback = HAL_CRYP_MspInit;
|
---|
854 | break;
|
---|
855 |
|
---|
856 | case HAL_CRYP_MSPDEINIT_CB_ID :
|
---|
857 | hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
|
---|
858 | break;
|
---|
859 |
|
---|
860 | default :
|
---|
861 | /* Update the error code */
|
---|
862 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
---|
863 | /* Return error status */
|
---|
864 | status = HAL_ERROR;
|
---|
865 | break;
|
---|
866 | }
|
---|
867 | }
|
---|
868 | else if (hcryp->State == HAL_CRYP_STATE_RESET)
|
---|
869 | {
|
---|
870 | switch (CallbackID)
|
---|
871 | {
|
---|
872 | case HAL_CRYP_MSPINIT_CB_ID :
|
---|
873 | hcryp->MspInitCallback = HAL_CRYP_MspInit;
|
---|
874 | break;
|
---|
875 |
|
---|
876 | case HAL_CRYP_MSPDEINIT_CB_ID :
|
---|
877 | hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
|
---|
878 | break;
|
---|
879 |
|
---|
880 | default :
|
---|
881 | /* Update the error code */
|
---|
882 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
---|
883 | /* Return error status */
|
---|
884 | status = HAL_ERROR;
|
---|
885 | break;
|
---|
886 | }
|
---|
887 | }
|
---|
888 | else
|
---|
889 | {
|
---|
890 | /* Update the error code */
|
---|
891 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
---|
892 | /* Return error status */
|
---|
893 | status = HAL_ERROR;
|
---|
894 | }
|
---|
895 |
|
---|
896 | /* Release Lock */
|
---|
897 | __HAL_UNLOCK(hcryp);
|
---|
898 |
|
---|
899 | return status;
|
---|
900 | }
|
---|
901 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
---|
902 | /**
|
---|
903 | * @}
|
---|
904 | */
|
---|
905 |
|
---|
906 | /** @defgroup CRYP_Exported_Functions_Group2 Encrypt Decrypt functions
|
---|
907 | * @brief processing functions.
|
---|
908 | *
|
---|
909 | @verbatim
|
---|
910 | ==============================================================================
|
---|
911 | ##### Encrypt Decrypt functions #####
|
---|
912 | ==============================================================================
|
---|
913 | [..] This section provides API allowing to Encrypt/Decrypt Data following
|
---|
914 | Standard DES/TDES or AES, and Algorithm configured by the user:
|
---|
915 | (+) Standard DES/TDES only supported by CRYP1 IP, below list of Algorithm supported :
|
---|
916 | - Electronic Code Book(ECB)
|
---|
917 | - Cipher Block Chaining (CBC)
|
---|
918 | (+) Standard AES supported by CRYP1 IP & TinyAES, list of Algorithm supported:
|
---|
919 | - Electronic Code Book(ECB)
|
---|
920 | - Cipher Block Chaining (CBC)
|
---|
921 | - Counter mode (CTR)
|
---|
922 | - Cipher Block Chaining (CBC)
|
---|
923 | - Counter mode (CTR)
|
---|
924 | - Galois/counter mode (GCM)
|
---|
925 | - Counter with Cipher Block Chaining-Message(CCM)
|
---|
926 | [..] Three processing functions are available:
|
---|
927 | (+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
|
---|
928 | (+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
|
---|
929 | (+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
|
---|
930 |
|
---|
931 | @endverbatim
|
---|
932 | * @{
|
---|
933 | */
|
---|
934 |
|
---|
935 |
|
---|
936 | /**
|
---|
937 | * @brief Encryption mode.
|
---|
938 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
939 | * the configuration information for CRYP module
|
---|
940 | * @param Input: Pointer to the input buffer (plaintext)
|
---|
941 | * @param Size: Length of the plaintext buffer in word.
|
---|
942 | * @param Output: Pointer to the output buffer(ciphertext)
|
---|
943 | * @param Timeout: Specify Timeout value
|
---|
944 | * @retval HAL status
|
---|
945 | */
|
---|
946 | HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output,
|
---|
947 | uint32_t Timeout)
|
---|
948 | {
|
---|
949 | uint32_t algo;
|
---|
950 | HAL_StatusTypeDef status;
|
---|
951 |
|
---|
952 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
953 | {
|
---|
954 | /* Change state Busy */
|
---|
955 | hcryp->State = HAL_CRYP_STATE_BUSY;
|
---|
956 |
|
---|
957 | /* Process locked */
|
---|
958 | __HAL_LOCK(hcryp);
|
---|
959 |
|
---|
960 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
---|
961 | hcryp->CrypInCount = 0U;
|
---|
962 | hcryp->CrypOutCount = 0U;
|
---|
963 | hcryp->pCrypInBuffPtr = Input;
|
---|
964 | hcryp->pCrypOutBuffPtr = Output;
|
---|
965 |
|
---|
966 | /* Calculate Size parameter in Byte*/
|
---|
967 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
---|
968 | {
|
---|
969 | hcryp->Size = Size * 4U;
|
---|
970 | }
|
---|
971 | else
|
---|
972 | {
|
---|
973 | hcryp->Size = Size;
|
---|
974 | }
|
---|
975 |
|
---|
976 | #if defined (CRYP)
|
---|
977 | /* Set Encryption operating mode*/
|
---|
978 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
979 |
|
---|
980 | /* algo get algorithm selected */
|
---|
981 | algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
---|
982 |
|
---|
983 | switch (algo)
|
---|
984 | {
|
---|
985 | case CRYP_DES_ECB:
|
---|
986 | case CRYP_DES_CBC:
|
---|
987 | case CRYP_TDES_ECB:
|
---|
988 | case CRYP_TDES_CBC:
|
---|
989 |
|
---|
990 | /*Set Key */
|
---|
991 | hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
992 | hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
993 | if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
994 | {
|
---|
995 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
996 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
997 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
998 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
999 | }
|
---|
1000 |
|
---|
1001 | /*Set Initialization Vector (IV)*/
|
---|
1002 | if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1003 | {
|
---|
1004 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
1005 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | /* Flush FIFO */
|
---|
1009 | HAL_CRYP_FIFO_FLUSH(hcryp);
|
---|
1010 |
|
---|
1011 | /* Set the phase */
|
---|
1012 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
1013 |
|
---|
1014 | /* Statrt DES/TDES encryption process */
|
---|
1015 | status = CRYP_TDES_Process(hcryp, Timeout);
|
---|
1016 | break;
|
---|
1017 |
|
---|
1018 | case CRYP_AES_ECB:
|
---|
1019 | case CRYP_AES_CBC:
|
---|
1020 | case CRYP_AES_CTR:
|
---|
1021 |
|
---|
1022 | /* AES encryption */
|
---|
1023 | status = CRYP_AES_Encrypt(hcryp, Timeout);
|
---|
1024 | break;
|
---|
1025 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
1026 | case CRYP_AES_GCM:
|
---|
1027 |
|
---|
1028 | /* AES GCM encryption */
|
---|
1029 | status = CRYP_AESGCM_Process(hcryp, Timeout);
|
---|
1030 |
|
---|
1031 | break;
|
---|
1032 |
|
---|
1033 | case CRYP_AES_CCM:
|
---|
1034 |
|
---|
1035 | /* AES CCM encryption */
|
---|
1036 | status = CRYP_AESCCM_Process(hcryp, Timeout);
|
---|
1037 | break;
|
---|
1038 | #endif /* GCM CCM defined*/
|
---|
1039 | default:
|
---|
1040 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1041 | /* Change the CRYP peripheral state */
|
---|
1042 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1043 | /* Process unlocked */
|
---|
1044 | __HAL_UNLOCK(hcryp);
|
---|
1045 | return HAL_ERROR;
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | #else /*AES*/
|
---|
1049 |
|
---|
1050 | /* Set the operating mode*/
|
---|
1051 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
1052 |
|
---|
1053 | /* algo get algorithm selected */
|
---|
1054 | algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
---|
1055 |
|
---|
1056 | switch (algo)
|
---|
1057 | {
|
---|
1058 |
|
---|
1059 | case CRYP_AES_ECB:
|
---|
1060 | case CRYP_AES_CBC:
|
---|
1061 | case CRYP_AES_CTR:
|
---|
1062 |
|
---|
1063 | /* AES encryption */
|
---|
1064 | status = CRYP_AES_Encrypt(hcryp, Timeout);
|
---|
1065 | break;
|
---|
1066 |
|
---|
1067 | case CRYP_AES_GCM_GMAC:
|
---|
1068 |
|
---|
1069 | /* AES GCM encryption */
|
---|
1070 | status = CRYP_AESGCM_Process(hcryp, Timeout) ;
|
---|
1071 | break;
|
---|
1072 |
|
---|
1073 | case CRYP_AES_CCM:
|
---|
1074 |
|
---|
1075 | /* AES CCM encryption */
|
---|
1076 | status = CRYP_AESCCM_Process(hcryp, Timeout);
|
---|
1077 | break;
|
---|
1078 |
|
---|
1079 | default:
|
---|
1080 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1081 | /* Change the CRYP peripheral state */
|
---|
1082 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1083 | /* Process unlocked */
|
---|
1084 | __HAL_UNLOCK(hcryp);
|
---|
1085 | return HAL_ERROR;
|
---|
1086 | }
|
---|
1087 | #endif /*end AES or CRYP */
|
---|
1088 |
|
---|
1089 | if (status == HAL_OK)
|
---|
1090 | {
|
---|
1091 | /* Change the CRYP peripheral state */
|
---|
1092 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1093 |
|
---|
1094 | /* Process unlocked */
|
---|
1095 | __HAL_UNLOCK(hcryp);
|
---|
1096 | }
|
---|
1097 | }
|
---|
1098 | else
|
---|
1099 | {
|
---|
1100 | /* Busy error code field */
|
---|
1101 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
1102 | return HAL_ERROR;
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 | /* Return function status */
|
---|
1106 | return HAL_OK;
|
---|
1107 | }
|
---|
1108 |
|
---|
1109 | /**
|
---|
1110 | * @brief Decryption mode.
|
---|
1111 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
1112 | * the configuration information for CRYP module
|
---|
1113 | * @param Input: Pointer to the input buffer (ciphertext )
|
---|
1114 | * @param Size: Length of the plaintext buffer in word.
|
---|
1115 | * @param Output: Pointer to the output buffer(plaintext)
|
---|
1116 | * @param Timeout: Specify Timeout value
|
---|
1117 | * @retval HAL status
|
---|
1118 | */
|
---|
1119 | HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output,
|
---|
1120 | uint32_t Timeout)
|
---|
1121 | {
|
---|
1122 | HAL_StatusTypeDef status;
|
---|
1123 | uint32_t algo;
|
---|
1124 |
|
---|
1125 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
1126 | {
|
---|
1127 | /* Change state Busy */
|
---|
1128 | hcryp->State = HAL_CRYP_STATE_BUSY;
|
---|
1129 |
|
---|
1130 | /* Process locked */
|
---|
1131 | __HAL_LOCK(hcryp);
|
---|
1132 |
|
---|
1133 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
---|
1134 | hcryp->CrypInCount = 0U;
|
---|
1135 | hcryp->CrypOutCount = 0U;
|
---|
1136 | hcryp->pCrypInBuffPtr = Input;
|
---|
1137 | hcryp->pCrypOutBuffPtr = Output;
|
---|
1138 |
|
---|
1139 | /* Calculate Size parameter in Byte*/
|
---|
1140 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
---|
1141 | {
|
---|
1142 | hcryp->Size = Size * 4U;
|
---|
1143 | }
|
---|
1144 | else
|
---|
1145 | {
|
---|
1146 | hcryp->Size = Size;
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 | #if defined (CRYP)
|
---|
1150 |
|
---|
1151 | /* Set Decryption operating mode*/
|
---|
1152 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
|
---|
1153 |
|
---|
1154 | /* algo get algorithm selected */
|
---|
1155 | algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
---|
1156 |
|
---|
1157 | switch (algo)
|
---|
1158 | {
|
---|
1159 | case CRYP_DES_ECB:
|
---|
1160 | case CRYP_DES_CBC:
|
---|
1161 | case CRYP_TDES_ECB:
|
---|
1162 | case CRYP_TDES_CBC:
|
---|
1163 |
|
---|
1164 | /*Set Key */
|
---|
1165 | hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
1166 | hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
1167 | if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1168 | {
|
---|
1169 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
1170 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
1171 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
1172 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | /*Set Initialization Vector (IV)*/
|
---|
1176 | if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1177 | {
|
---|
1178 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
1179 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
1180 | }
|
---|
1181 |
|
---|
1182 | /* Flush FIFO */
|
---|
1183 | HAL_CRYP_FIFO_FLUSH(hcryp);
|
---|
1184 |
|
---|
1185 | /* Set the phase */
|
---|
1186 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
1187 |
|
---|
1188 | /* Start DES/TDES decryption process */
|
---|
1189 | status = CRYP_TDES_Process(hcryp, Timeout);
|
---|
1190 |
|
---|
1191 | break;
|
---|
1192 |
|
---|
1193 | case CRYP_AES_ECB:
|
---|
1194 | case CRYP_AES_CBC:
|
---|
1195 | case CRYP_AES_CTR:
|
---|
1196 |
|
---|
1197 | /* AES decryption */
|
---|
1198 | status = CRYP_AES_Decrypt(hcryp, Timeout);
|
---|
1199 | break;
|
---|
1200 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
1201 | case CRYP_AES_GCM:
|
---|
1202 |
|
---|
1203 | /* AES GCM decryption */
|
---|
1204 | status = CRYP_AESGCM_Process(hcryp, Timeout) ;
|
---|
1205 | break;
|
---|
1206 |
|
---|
1207 | case CRYP_AES_CCM:
|
---|
1208 |
|
---|
1209 | /* AES CCM decryption */
|
---|
1210 | status = CRYP_AESCCM_Process(hcryp, Timeout);
|
---|
1211 | break;
|
---|
1212 | #endif /* GCM CCM defined*/
|
---|
1213 | default:
|
---|
1214 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1215 | /* Change the CRYP peripheral state */
|
---|
1216 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1217 | /* Process unlocked */
|
---|
1218 | __HAL_UNLOCK(hcryp);
|
---|
1219 | return HAL_ERROR;
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 | #else /*AES*/
|
---|
1223 |
|
---|
1224 | /* Set Decryption operating mode*/
|
---|
1225 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
---|
1226 |
|
---|
1227 | /* algo get algorithm selected */
|
---|
1228 | algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
---|
1229 |
|
---|
1230 | switch (algo)
|
---|
1231 | {
|
---|
1232 |
|
---|
1233 | case CRYP_AES_ECB:
|
---|
1234 | case CRYP_AES_CBC:
|
---|
1235 | case CRYP_AES_CTR:
|
---|
1236 |
|
---|
1237 | /* AES decryption */
|
---|
1238 | status = CRYP_AES_Decrypt(hcryp, Timeout);
|
---|
1239 | break;
|
---|
1240 |
|
---|
1241 | case CRYP_AES_GCM_GMAC:
|
---|
1242 |
|
---|
1243 | /* AES GCM decryption */
|
---|
1244 | status = CRYP_AESGCM_Process(hcryp, Timeout) ;
|
---|
1245 | break;
|
---|
1246 |
|
---|
1247 | case CRYP_AES_CCM:
|
---|
1248 |
|
---|
1249 | /* AES CCM decryption */
|
---|
1250 | status = CRYP_AESCCM_Process(hcryp, Timeout);
|
---|
1251 | break;
|
---|
1252 |
|
---|
1253 | default:
|
---|
1254 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1255 | /* Change the CRYP peripheral state */
|
---|
1256 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1257 | /* Process unlocked */
|
---|
1258 | __HAL_UNLOCK(hcryp);
|
---|
1259 | return HAL_ERROR;
|
---|
1260 | }
|
---|
1261 | #endif /* End AES or CRYP */
|
---|
1262 |
|
---|
1263 | if (status == HAL_OK)
|
---|
1264 | {
|
---|
1265 | /* Change the CRYP peripheral state */
|
---|
1266 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1267 |
|
---|
1268 | /* Process unlocked */
|
---|
1269 | __HAL_UNLOCK(hcryp);
|
---|
1270 | }
|
---|
1271 | }
|
---|
1272 | else
|
---|
1273 | {
|
---|
1274 | /* Busy error code field */
|
---|
1275 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
1276 | return HAL_ERROR;
|
---|
1277 | }
|
---|
1278 |
|
---|
1279 | /* Return function status */
|
---|
1280 | return HAL_OK;
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 | /**
|
---|
1284 | * @brief Encryption in interrupt mode.
|
---|
1285 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
1286 | * the configuration information for CRYP module
|
---|
1287 | * @param Input: Pointer to the input buffer (plaintext)
|
---|
1288 | * @param Size: Length of the plaintext buffer in word
|
---|
1289 | * @param Output: Pointer to the output buffer(ciphertext)
|
---|
1290 | * @retval HAL status
|
---|
1291 | */
|
---|
1292 | HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
---|
1293 | {
|
---|
1294 | uint32_t algo;
|
---|
1295 | HAL_StatusTypeDef status = HAL_OK;
|
---|
1296 |
|
---|
1297 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
1298 | {
|
---|
1299 | /* Change state Busy */
|
---|
1300 | hcryp->State = HAL_CRYP_STATE_BUSY;
|
---|
1301 |
|
---|
1302 | /* Process locked */
|
---|
1303 | __HAL_LOCK(hcryp);
|
---|
1304 |
|
---|
1305 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
---|
1306 | hcryp->CrypInCount = 0U;
|
---|
1307 | hcryp->CrypOutCount = 0U;
|
---|
1308 | hcryp->pCrypInBuffPtr = Input;
|
---|
1309 | hcryp->pCrypOutBuffPtr = Output;
|
---|
1310 |
|
---|
1311 | /* Calculate Size parameter in Byte*/
|
---|
1312 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
---|
1313 | {
|
---|
1314 | hcryp->Size = Size * 4U;
|
---|
1315 | }
|
---|
1316 | else
|
---|
1317 | {
|
---|
1318 | hcryp->Size = Size;
|
---|
1319 | }
|
---|
1320 |
|
---|
1321 | #if defined (CRYP)
|
---|
1322 |
|
---|
1323 | /* Set encryption operating mode*/
|
---|
1324 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
1325 |
|
---|
1326 | /* algo get algorithm selected */
|
---|
1327 | algo = (hcryp->Instance->CR & CRYP_CR_ALGOMODE);
|
---|
1328 |
|
---|
1329 | switch (algo)
|
---|
1330 | {
|
---|
1331 | case CRYP_DES_ECB:
|
---|
1332 | case CRYP_DES_CBC:
|
---|
1333 | case CRYP_TDES_ECB:
|
---|
1334 | case CRYP_TDES_CBC:
|
---|
1335 |
|
---|
1336 | /*Set Key */
|
---|
1337 | hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
1338 | hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
1339 | if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1340 | {
|
---|
1341 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
1342 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
1343 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
1344 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
1345 | }
|
---|
1346 | /* Set the Initialization Vector*/
|
---|
1347 | if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1348 | {
|
---|
1349 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
1350 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
1351 | }
|
---|
1352 |
|
---|
1353 | /* Flush FIFO */
|
---|
1354 | HAL_CRYP_FIFO_FLUSH(hcryp);
|
---|
1355 |
|
---|
1356 | /* Set the phase */
|
---|
1357 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
1358 |
|
---|
1359 | /* Enable interrupts */
|
---|
1360 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
---|
1361 |
|
---|
1362 | /* Enable CRYP to start DES/TDES process*/
|
---|
1363 | __HAL_CRYP_ENABLE(hcryp);
|
---|
1364 | break;
|
---|
1365 |
|
---|
1366 | case CRYP_AES_ECB:
|
---|
1367 | case CRYP_AES_CBC:
|
---|
1368 | case CRYP_AES_CTR:
|
---|
1369 |
|
---|
1370 | status = CRYP_AES_Encrypt_IT(hcryp);
|
---|
1371 | break;
|
---|
1372 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
1373 | case CRYP_AES_GCM:
|
---|
1374 |
|
---|
1375 | status = CRYP_AESGCM_Process_IT(hcryp) ;
|
---|
1376 | break;
|
---|
1377 |
|
---|
1378 | case CRYP_AES_CCM:
|
---|
1379 |
|
---|
1380 | status = CRYP_AESCCM_Process_IT(hcryp);
|
---|
1381 | break;
|
---|
1382 | #endif /* GCM CCM defined*/
|
---|
1383 | default:
|
---|
1384 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1385 | /* Change the CRYP peripheral state */
|
---|
1386 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1387 | /* Process unlocked */
|
---|
1388 | __HAL_UNLOCK(hcryp);
|
---|
1389 | status = HAL_ERROR;
|
---|
1390 | break;
|
---|
1391 | }
|
---|
1392 |
|
---|
1393 | #else /* AES */
|
---|
1394 |
|
---|
1395 | /* Set encryption operating mode*/
|
---|
1396 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
1397 |
|
---|
1398 | /* algo get algorithm selected */
|
---|
1399 | algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
---|
1400 |
|
---|
1401 | switch (algo)
|
---|
1402 | {
|
---|
1403 | case CRYP_AES_ECB:
|
---|
1404 | case CRYP_AES_CBC:
|
---|
1405 | case CRYP_AES_CTR:
|
---|
1406 |
|
---|
1407 | /* AES encryption */
|
---|
1408 | status = CRYP_AES_Encrypt_IT(hcryp);
|
---|
1409 | break;
|
---|
1410 |
|
---|
1411 | case CRYP_AES_GCM_GMAC:
|
---|
1412 |
|
---|
1413 | /* AES GCM encryption */
|
---|
1414 | status = CRYP_AESGCM_Process_IT(hcryp) ;
|
---|
1415 | break;
|
---|
1416 |
|
---|
1417 | case CRYP_AES_CCM:
|
---|
1418 |
|
---|
1419 | /* AES CCM encryption */
|
---|
1420 | status = CRYP_AESCCM_Process_IT(hcryp);
|
---|
1421 | break;
|
---|
1422 |
|
---|
1423 | default:
|
---|
1424 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1425 | /* Change the CRYP peripheral state */
|
---|
1426 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1427 | /* Process unlocked */
|
---|
1428 | __HAL_UNLOCK(hcryp);
|
---|
1429 | status = HAL_ERROR;
|
---|
1430 | break;
|
---|
1431 | }
|
---|
1432 | #endif /*end AES or CRYP*/
|
---|
1433 |
|
---|
1434 | }
|
---|
1435 | else
|
---|
1436 | {
|
---|
1437 | /* Busy error code field */
|
---|
1438 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
1439 | status = HAL_ERROR;
|
---|
1440 | }
|
---|
1441 |
|
---|
1442 | /* Return function status */
|
---|
1443 | return status;
|
---|
1444 | }
|
---|
1445 |
|
---|
1446 | /**
|
---|
1447 | * @brief Decryption in itnterrupt mode.
|
---|
1448 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
1449 | * the configuration information for CRYP module
|
---|
1450 | * @param Input: Pointer to the input buffer (ciphertext )
|
---|
1451 | * @param Size: Length of the plaintext buffer in word.
|
---|
1452 | * @param Output: Pointer to the output buffer(plaintext)
|
---|
1453 | * @retval HAL status
|
---|
1454 | */
|
---|
1455 | HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
---|
1456 | {
|
---|
1457 | uint32_t algo;
|
---|
1458 | HAL_StatusTypeDef status = HAL_OK;
|
---|
1459 |
|
---|
1460 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
1461 | {
|
---|
1462 | /* Change state Busy */
|
---|
1463 | hcryp->State = HAL_CRYP_STATE_BUSY;
|
---|
1464 |
|
---|
1465 | /* Process locked */
|
---|
1466 | __HAL_LOCK(hcryp);
|
---|
1467 |
|
---|
1468 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
---|
1469 | hcryp->CrypInCount = 0U;
|
---|
1470 | hcryp->CrypOutCount = 0U;
|
---|
1471 | hcryp->pCrypInBuffPtr = Input;
|
---|
1472 | hcryp->pCrypOutBuffPtr = Output;
|
---|
1473 |
|
---|
1474 | /* Calculate Size parameter in Byte*/
|
---|
1475 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
---|
1476 | {
|
---|
1477 | hcryp->Size = Size * 4U;
|
---|
1478 | }
|
---|
1479 | else
|
---|
1480 | {
|
---|
1481 | hcryp->Size = Size;
|
---|
1482 | }
|
---|
1483 |
|
---|
1484 | #if defined (CRYP)
|
---|
1485 |
|
---|
1486 | /* Set decryption operating mode*/
|
---|
1487 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
|
---|
1488 |
|
---|
1489 | /* algo get algorithm selected */
|
---|
1490 | algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
---|
1491 |
|
---|
1492 | switch (algo)
|
---|
1493 | {
|
---|
1494 | case CRYP_DES_ECB:
|
---|
1495 | case CRYP_DES_CBC:
|
---|
1496 | case CRYP_TDES_ECB:
|
---|
1497 | case CRYP_TDES_CBC:
|
---|
1498 |
|
---|
1499 | /*Set Key */
|
---|
1500 | hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
1501 | hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
1502 | if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1503 | {
|
---|
1504 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
1505 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
1506 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
1507 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
1508 | }
|
---|
1509 |
|
---|
1510 | /* Set the Initialization Vector*/
|
---|
1511 | if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1512 | {
|
---|
1513 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
1514 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
1515 | }
|
---|
1516 | /* Flush FIFO */
|
---|
1517 | HAL_CRYP_FIFO_FLUSH(hcryp);
|
---|
1518 |
|
---|
1519 | /* Set the phase */
|
---|
1520 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
1521 |
|
---|
1522 | /* Enable interrupts */
|
---|
1523 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
---|
1524 |
|
---|
1525 | /* Enable CRYP and start DES/TDES process*/
|
---|
1526 | __HAL_CRYP_ENABLE(hcryp);
|
---|
1527 |
|
---|
1528 | break;
|
---|
1529 |
|
---|
1530 | case CRYP_AES_ECB:
|
---|
1531 | case CRYP_AES_CBC:
|
---|
1532 | case CRYP_AES_CTR:
|
---|
1533 |
|
---|
1534 | /* AES decryption */
|
---|
1535 | status = CRYP_AES_Decrypt_IT(hcryp);
|
---|
1536 | break;
|
---|
1537 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
1538 | case CRYP_AES_GCM:
|
---|
1539 |
|
---|
1540 | /* AES GCM decryption */
|
---|
1541 | status = CRYP_AESGCM_Process_IT(hcryp) ;
|
---|
1542 | break;
|
---|
1543 |
|
---|
1544 | case CRYP_AES_CCM:
|
---|
1545 |
|
---|
1546 | /* AES CCMdecryption */
|
---|
1547 | status = CRYP_AESCCM_Process_IT(hcryp);
|
---|
1548 | break;
|
---|
1549 | #endif /* GCM CCM defined*/
|
---|
1550 | default:
|
---|
1551 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1552 | /* Change the CRYP peripheral state */
|
---|
1553 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1554 | /* Process unlocked */
|
---|
1555 | __HAL_UNLOCK(hcryp);
|
---|
1556 | status = HAL_ERROR;
|
---|
1557 | break;
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | #else /*AES*/
|
---|
1561 |
|
---|
1562 | /* Set decryption operating mode*/
|
---|
1563 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
---|
1564 |
|
---|
1565 | /* algo get algorithm selected */
|
---|
1566 | algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
---|
1567 |
|
---|
1568 | switch (algo)
|
---|
1569 | {
|
---|
1570 | case CRYP_AES_ECB:
|
---|
1571 | case CRYP_AES_CBC:
|
---|
1572 | case CRYP_AES_CTR:
|
---|
1573 |
|
---|
1574 | /* AES decryption */
|
---|
1575 | status = CRYP_AES_Decrypt_IT(hcryp);
|
---|
1576 | break;
|
---|
1577 |
|
---|
1578 | case CRYP_AES_GCM_GMAC:
|
---|
1579 |
|
---|
1580 | /* AES GCM decryption */
|
---|
1581 | status = CRYP_AESGCM_Process_IT(hcryp) ;
|
---|
1582 | break;
|
---|
1583 |
|
---|
1584 | case CRYP_AES_CCM:
|
---|
1585 |
|
---|
1586 | /* AES CCM decryption */
|
---|
1587 | status = CRYP_AESCCM_Process_IT(hcryp);
|
---|
1588 | break;
|
---|
1589 |
|
---|
1590 | default:
|
---|
1591 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1592 | /* Change the CRYP peripheral state */
|
---|
1593 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1594 | /* Process unlocked */
|
---|
1595 | __HAL_UNLOCK(hcryp);
|
---|
1596 | status = HAL_ERROR;
|
---|
1597 | break;
|
---|
1598 | }
|
---|
1599 | #endif /* End AES or CRYP */
|
---|
1600 |
|
---|
1601 | }
|
---|
1602 | else
|
---|
1603 | {
|
---|
1604 | /* Busy error code field */
|
---|
1605 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
1606 | status = HAL_ERROR;
|
---|
1607 | }
|
---|
1608 |
|
---|
1609 | /* Return function status */
|
---|
1610 | return status;
|
---|
1611 | }
|
---|
1612 |
|
---|
1613 | /**
|
---|
1614 | * @brief Encryption in DMA mode.
|
---|
1615 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
1616 | * the configuration information for CRYP module
|
---|
1617 | * @param Input: Pointer to the input buffer (plaintext)
|
---|
1618 | * @param Size: Length of the plaintext buffer in word.
|
---|
1619 | * @param Output: Pointer to the output buffer(ciphertext)
|
---|
1620 | * @retval HAL status
|
---|
1621 | */
|
---|
1622 | HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
---|
1623 | {
|
---|
1624 | uint32_t algo;
|
---|
1625 | HAL_StatusTypeDef status = HAL_OK;
|
---|
1626 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
1627 |
|
---|
1628 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
1629 | {
|
---|
1630 | /* Change state Busy */
|
---|
1631 | hcryp->State = HAL_CRYP_STATE_BUSY;
|
---|
1632 |
|
---|
1633 | /* Process locked */
|
---|
1634 | __HAL_LOCK(hcryp);
|
---|
1635 |
|
---|
1636 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
---|
1637 | hcryp->CrypInCount = 0U;
|
---|
1638 | hcryp->CrypOutCount = 0U;
|
---|
1639 | hcryp->pCrypInBuffPtr = Input;
|
---|
1640 | hcryp->pCrypOutBuffPtr = Output;
|
---|
1641 |
|
---|
1642 | /* Calculate Size parameter in Byte*/
|
---|
1643 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
---|
1644 | {
|
---|
1645 | hcryp->Size = Size * 4U;
|
---|
1646 | }
|
---|
1647 | else
|
---|
1648 | {
|
---|
1649 | hcryp->Size = Size;
|
---|
1650 | }
|
---|
1651 |
|
---|
1652 | #if defined (CRYP)
|
---|
1653 |
|
---|
1654 | /* Set encryption operating mode*/
|
---|
1655 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
1656 |
|
---|
1657 | /* algo get algorithm selected */
|
---|
1658 | algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
---|
1659 |
|
---|
1660 | switch (algo)
|
---|
1661 | {
|
---|
1662 | case CRYP_DES_ECB:
|
---|
1663 | case CRYP_DES_CBC:
|
---|
1664 | case CRYP_TDES_ECB:
|
---|
1665 | case CRYP_TDES_CBC:
|
---|
1666 |
|
---|
1667 | /*Set Key */
|
---|
1668 | hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
1669 | hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
1670 | if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1671 | {
|
---|
1672 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
1673 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
1674 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
1675 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
1676 | }
|
---|
1677 |
|
---|
1678 | /* Set the Initialization Vector*/
|
---|
1679 | if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1680 | {
|
---|
1681 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
1682 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
1683 | }
|
---|
1684 |
|
---|
1685 | /* Flush FIFO */
|
---|
1686 | HAL_CRYP_FIFO_FLUSH(hcryp);
|
---|
1687 |
|
---|
1688 | /* Set the phase */
|
---|
1689 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
1690 |
|
---|
1691 | /* Start DMA process transfer for DES/TDES */
|
---|
1692 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size) / 4U),
|
---|
1693 | (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
1694 | break;
|
---|
1695 |
|
---|
1696 | case CRYP_AES_ECB:
|
---|
1697 | case CRYP_AES_CBC:
|
---|
1698 | case CRYP_AES_CTR:
|
---|
1699 |
|
---|
1700 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
1701 | {
|
---|
1702 | if (hcryp->KeyIVConfig == 1U)
|
---|
1703 | {
|
---|
1704 | /* If the Key and IV configuration has to be done only once
|
---|
1705 | and if it has already been done, skip it */
|
---|
1706 | DoKeyIVConfig = 0U;
|
---|
1707 | }
|
---|
1708 | else
|
---|
1709 | {
|
---|
1710 | /* If the Key and IV configuration has to be done only once
|
---|
1711 | and if it has not been done already, do it and set KeyIVConfig
|
---|
1712 | to keep track it won't have to be done again next time */
|
---|
1713 | hcryp->KeyIVConfig = 1U;
|
---|
1714 | }
|
---|
1715 | }
|
---|
1716 |
|
---|
1717 | if (DoKeyIVConfig == 1U)
|
---|
1718 | {
|
---|
1719 | /* Set the Key*/
|
---|
1720 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
1721 |
|
---|
1722 | /* Set the Initialization Vector*/
|
---|
1723 | if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
---|
1724 | {
|
---|
1725 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
1726 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
---|
1727 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
---|
1728 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
---|
1729 | }
|
---|
1730 | } /* if (DoKeyIVConfig == 1U) */
|
---|
1731 |
|
---|
1732 | /* Set the phase */
|
---|
1733 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
1734 |
|
---|
1735 | /* Start DMA process transfer for AES */
|
---|
1736 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size) / 4U),
|
---|
1737 | (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
1738 | break;
|
---|
1739 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
1740 | case CRYP_AES_GCM:
|
---|
1741 | /* AES GCM encryption */
|
---|
1742 | status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
---|
1743 | break;
|
---|
1744 |
|
---|
1745 | case CRYP_AES_CCM:
|
---|
1746 | /* AES CCM encryption */
|
---|
1747 | status = CRYP_AESCCM_Process_DMA(hcryp);
|
---|
1748 | break;
|
---|
1749 | #endif /* GCM CCM defined*/
|
---|
1750 | default:
|
---|
1751 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1752 | /* Change the CRYP peripheral state */
|
---|
1753 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1754 | /* Process unlocked */
|
---|
1755 | __HAL_UNLOCK(hcryp);
|
---|
1756 | status = HAL_ERROR;
|
---|
1757 | break;
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 | #else /*AES*/
|
---|
1761 | /* Set encryption operating mode*/
|
---|
1762 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
1763 |
|
---|
1764 | /* algo get algorithm selected */
|
---|
1765 | algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
---|
1766 |
|
---|
1767 | switch (algo)
|
---|
1768 | {
|
---|
1769 |
|
---|
1770 | case CRYP_AES_ECB:
|
---|
1771 | case CRYP_AES_CBC:
|
---|
1772 | case CRYP_AES_CTR:
|
---|
1773 |
|
---|
1774 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
1775 | {
|
---|
1776 | if (hcryp->KeyIVConfig == 1U)
|
---|
1777 | {
|
---|
1778 | /* If the Key and IV configuration has to be done only once
|
---|
1779 | and if it has already been done, skip it */
|
---|
1780 | DoKeyIVConfig = 0U;
|
---|
1781 | }
|
---|
1782 | else
|
---|
1783 | {
|
---|
1784 | /* If the Key and IV configuration has to be done only once
|
---|
1785 | and if it has not been done already, do it and set KeyIVConfig
|
---|
1786 | to keep track it won't have to be done again next time */
|
---|
1787 | hcryp->KeyIVConfig = 1U;
|
---|
1788 | }
|
---|
1789 | }
|
---|
1790 |
|
---|
1791 | if (DoKeyIVConfig == 1U)
|
---|
1792 | {
|
---|
1793 | /* Set the Key*/
|
---|
1794 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
1795 |
|
---|
1796 | /* Set the Initialization Vector*/
|
---|
1797 | if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
---|
1798 | {
|
---|
1799 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
1800 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
1801 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
1802 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
1803 | }
|
---|
1804 | } /* if (DoKeyIVConfig == 1U) */
|
---|
1805 | /* Set the phase */
|
---|
1806 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
1807 |
|
---|
1808 | /* Start DMA process transfer for AES */
|
---|
1809 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
1810 | break;
|
---|
1811 |
|
---|
1812 | case CRYP_AES_GCM_GMAC:
|
---|
1813 | /* AES GCM encryption */
|
---|
1814 | status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
---|
1815 | break;
|
---|
1816 |
|
---|
1817 | case CRYP_AES_CCM:
|
---|
1818 | /* AES CCM encryption */
|
---|
1819 | status = CRYP_AESCCM_Process_DMA(hcryp);
|
---|
1820 | break;
|
---|
1821 |
|
---|
1822 | default:
|
---|
1823 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1824 | /* Change the CRYP peripheral state */
|
---|
1825 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1826 | /* Process unlocked */
|
---|
1827 | __HAL_UNLOCK(hcryp);
|
---|
1828 | status = HAL_ERROR;
|
---|
1829 | break;
|
---|
1830 | }
|
---|
1831 | #endif /* End AES or CRYP */
|
---|
1832 |
|
---|
1833 | }
|
---|
1834 | else
|
---|
1835 | {
|
---|
1836 | /* Busy error code field */
|
---|
1837 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
1838 | status = HAL_ERROR;
|
---|
1839 | }
|
---|
1840 |
|
---|
1841 | /* Return function status */
|
---|
1842 | return status;
|
---|
1843 | }
|
---|
1844 |
|
---|
1845 | /**
|
---|
1846 | * @brief Decryption in DMA mode.
|
---|
1847 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
1848 | * the configuration information for CRYP module
|
---|
1849 | * @param Input: Pointer to the input buffer (ciphertext )
|
---|
1850 | * @param Size: Length of the plaintext buffer in word
|
---|
1851 | * @param Output: Pointer to the output buffer(plaintext)
|
---|
1852 | * @retval HAL status
|
---|
1853 | */
|
---|
1854 | HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
---|
1855 | {
|
---|
1856 | uint32_t algo;
|
---|
1857 | HAL_StatusTypeDef status = HAL_OK;
|
---|
1858 |
|
---|
1859 | if (hcryp->State == HAL_CRYP_STATE_READY)
|
---|
1860 | {
|
---|
1861 |
|
---|
1862 | /* Change state Busy */
|
---|
1863 | hcryp->State = HAL_CRYP_STATE_BUSY;
|
---|
1864 |
|
---|
1865 | /* Process locked */
|
---|
1866 | __HAL_LOCK(hcryp);
|
---|
1867 |
|
---|
1868 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
---|
1869 | hcryp->CrypInCount = 0U;
|
---|
1870 | hcryp->CrypOutCount = 0U;
|
---|
1871 | hcryp->pCrypInBuffPtr = Input;
|
---|
1872 | hcryp->pCrypOutBuffPtr = Output;
|
---|
1873 |
|
---|
1874 | /* Calculate Size parameter in Byte*/
|
---|
1875 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
---|
1876 | {
|
---|
1877 | hcryp->Size = Size * 4U;
|
---|
1878 | }
|
---|
1879 | else
|
---|
1880 | {
|
---|
1881 | hcryp->Size = Size;
|
---|
1882 | }
|
---|
1883 |
|
---|
1884 | #if defined (CRYP)
|
---|
1885 |
|
---|
1886 | /* Set decryption operating mode*/
|
---|
1887 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGODIR, CRYP_OPERATINGMODE_DECRYPT);
|
---|
1888 |
|
---|
1889 | /* algo get algorithm selected */
|
---|
1890 | algo = hcryp->Instance->CR & CRYP_CR_ALGOMODE;
|
---|
1891 |
|
---|
1892 | switch (algo)
|
---|
1893 | {
|
---|
1894 | case CRYP_DES_ECB:
|
---|
1895 | case CRYP_DES_CBC:
|
---|
1896 | case CRYP_TDES_ECB:
|
---|
1897 | case CRYP_TDES_CBC:
|
---|
1898 |
|
---|
1899 | /*Set Key */
|
---|
1900 | hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
1901 | hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
1902 | if ((hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1903 | {
|
---|
1904 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
1905 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
1906 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
1907 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
1908 | }
|
---|
1909 |
|
---|
1910 | /* Set the Initialization Vector*/
|
---|
1911 | if ((hcryp->Init.Algorithm == CRYP_DES_CBC) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
1912 | {
|
---|
1913 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
1914 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | /* Flush FIFO */
|
---|
1918 | HAL_CRYP_FIFO_FLUSH(hcryp);
|
---|
1919 |
|
---|
1920 | /* Set the phase */
|
---|
1921 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
1922 |
|
---|
1923 | /* Start DMA process transfer for DES/TDES */
|
---|
1924 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)(hcryp->Size) / 4U),
|
---|
1925 | (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
1926 | break;
|
---|
1927 |
|
---|
1928 | case CRYP_AES_ECB:
|
---|
1929 | case CRYP_AES_CBC:
|
---|
1930 | case CRYP_AES_CTR:
|
---|
1931 |
|
---|
1932 | /* AES decryption */
|
---|
1933 | status = CRYP_AES_Decrypt_DMA(hcryp);
|
---|
1934 | break;
|
---|
1935 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
1936 | case CRYP_AES_GCM:
|
---|
1937 | /* AES GCM decryption */
|
---|
1938 | status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
---|
1939 | break;
|
---|
1940 |
|
---|
1941 | case CRYP_AES_CCM:
|
---|
1942 | /* AES CCM decryption */
|
---|
1943 | status = CRYP_AESCCM_Process_DMA(hcryp);
|
---|
1944 | break;
|
---|
1945 | #endif /* GCM CCM defined*/
|
---|
1946 | default:
|
---|
1947 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1948 | /* Change the CRYP peripheral state */
|
---|
1949 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1950 | /* Process unlocked */
|
---|
1951 | __HAL_UNLOCK(hcryp);
|
---|
1952 | status = HAL_ERROR;
|
---|
1953 | break;
|
---|
1954 | }
|
---|
1955 |
|
---|
1956 | #else /*AES*/
|
---|
1957 |
|
---|
1958 | /* Set decryption operating mode*/
|
---|
1959 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
---|
1960 |
|
---|
1961 | /* algo get algorithm selected */
|
---|
1962 | algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
---|
1963 |
|
---|
1964 | switch (algo)
|
---|
1965 | {
|
---|
1966 |
|
---|
1967 | case CRYP_AES_ECB:
|
---|
1968 | case CRYP_AES_CBC:
|
---|
1969 | case CRYP_AES_CTR:
|
---|
1970 |
|
---|
1971 | /* AES decryption */
|
---|
1972 | status = CRYP_AES_Decrypt_DMA(hcryp);
|
---|
1973 | break;
|
---|
1974 |
|
---|
1975 | case CRYP_AES_GCM_GMAC:
|
---|
1976 | /* AES GCM decryption */
|
---|
1977 | status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
---|
1978 | break;
|
---|
1979 |
|
---|
1980 | case CRYP_AES_CCM:
|
---|
1981 | /* AES CCM decryption */
|
---|
1982 | status = CRYP_AESCCM_Process_DMA(hcryp);
|
---|
1983 | break;
|
---|
1984 |
|
---|
1985 | default:
|
---|
1986 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
---|
1987 | /* Change the CRYP peripheral state */
|
---|
1988 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
1989 | /* Process unlocked */
|
---|
1990 | __HAL_UNLOCK(hcryp);
|
---|
1991 | status = HAL_ERROR;
|
---|
1992 | break;
|
---|
1993 | }
|
---|
1994 | #endif /* End AES or CRYP */
|
---|
1995 | }
|
---|
1996 | else
|
---|
1997 | {
|
---|
1998 | /* Busy error code field */
|
---|
1999 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
2000 | status = HAL_ERROR;
|
---|
2001 | }
|
---|
2002 |
|
---|
2003 | /* Return function status */
|
---|
2004 | return status;
|
---|
2005 | }
|
---|
2006 |
|
---|
2007 | /**
|
---|
2008 | * @}
|
---|
2009 | */
|
---|
2010 |
|
---|
2011 | /** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management
|
---|
2012 | * @brief CRYP IRQ handler.
|
---|
2013 | *
|
---|
2014 | @verbatim
|
---|
2015 | ==============================================================================
|
---|
2016 | ##### CRYP IRQ handler management #####
|
---|
2017 | ==============================================================================
|
---|
2018 | [..] This section provides CRYP IRQ handler and callback functions.
|
---|
2019 | (+) HAL_CRYP_IRQHandler CRYP interrupt request
|
---|
2020 | (+) HAL_CRYP_InCpltCallback input data transfer complete callback
|
---|
2021 | (+) HAL_CRYP_OutCpltCallback output data transfer complete callback
|
---|
2022 | (+) HAL_CRYP_ErrorCallback CRYP error callback
|
---|
2023 | (+) HAL_CRYP_GetState return the CRYP state
|
---|
2024 | (+) HAL_CRYP_GetError return the CRYP error code
|
---|
2025 | @endverbatim
|
---|
2026 | * @{
|
---|
2027 | */
|
---|
2028 |
|
---|
2029 | /**
|
---|
2030 | * @brief This function handles cryptographic interrupt request.
|
---|
2031 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2032 | * the configuration information for CRYP module
|
---|
2033 | * @retval None
|
---|
2034 | */
|
---|
2035 | void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
|
---|
2036 | {
|
---|
2037 |
|
---|
2038 | #if defined (CRYP)
|
---|
2039 |
|
---|
2040 | uint32_t itstatus = hcryp->Instance->MISR;
|
---|
2041 |
|
---|
2042 | if ((itstatus & (CRYP_IT_INI | CRYP_IT_OUTI)) != 0U)
|
---|
2043 | {
|
---|
2044 | if ((hcryp->Init.Algorithm == CRYP_DES_ECB) || (hcryp->Init.Algorithm == CRYP_DES_CBC)
|
---|
2045 | || (hcryp->Init.Algorithm == CRYP_TDES_ECB) || (hcryp->Init.Algorithm == CRYP_TDES_CBC))
|
---|
2046 | {
|
---|
2047 | CRYP_TDES_IT(hcryp); /* DES or TDES*/
|
---|
2048 | }
|
---|
2049 | else if ((hcryp->Init.Algorithm == CRYP_AES_ECB) || (hcryp->Init.Algorithm == CRYP_AES_CBC)
|
---|
2050 | || (hcryp->Init.Algorithm == CRYP_AES_CTR))
|
---|
2051 | {
|
---|
2052 | CRYP_AES_IT(hcryp); /*AES*/
|
---|
2053 | }
|
---|
2054 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
2055 | else if ((hcryp->Init.Algorithm == CRYP_AES_GCM) || (hcryp->Init.Algorithm == CRYP_CR_ALGOMODE_AES_CCM))
|
---|
2056 | {
|
---|
2057 | /* if header phase */
|
---|
2058 | if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER)
|
---|
2059 | {
|
---|
2060 | CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
|
---|
2061 | }
|
---|
2062 | else /* if payload phase */
|
---|
2063 | {
|
---|
2064 | CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
|
---|
2065 | }
|
---|
2066 | }
|
---|
2067 | #endif /* GCM CCM defined*/
|
---|
2068 | else
|
---|
2069 | {
|
---|
2070 | /* Nothing to do */
|
---|
2071 | }
|
---|
2072 | }
|
---|
2073 |
|
---|
2074 | #else /*AES*/
|
---|
2075 | if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_IT_CCF) != RESET)
|
---|
2076 | {
|
---|
2077 | if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_CCFIE) != RESET)
|
---|
2078 | {
|
---|
2079 |
|
---|
2080 | /* Clear computation complete flag */
|
---|
2081 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
2082 |
|
---|
2083 | if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
---|
2084 | {
|
---|
2085 |
|
---|
2086 | /* if header phase */
|
---|
2087 | if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER)
|
---|
2088 | {
|
---|
2089 | CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
|
---|
2090 | }
|
---|
2091 | else /* if payload phase */
|
---|
2092 | {
|
---|
2093 | CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
|
---|
2094 | }
|
---|
2095 | }
|
---|
2096 | else if (hcryp->Init.Algorithm == CRYP_AES_CCM)
|
---|
2097 | {
|
---|
2098 | /* if header phase */
|
---|
2099 | if (hcryp->Init.HeaderSize >= hcryp->CrypHeaderCount)
|
---|
2100 | {
|
---|
2101 | CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
|
---|
2102 | }
|
---|
2103 | else /* if payload phase */
|
---|
2104 | {
|
---|
2105 | CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
|
---|
2106 | }
|
---|
2107 | }
|
---|
2108 | else /* AES Algorithm ECB,CBC or CTR*/
|
---|
2109 | {
|
---|
2110 | CRYP_AES_IT(hcryp);
|
---|
2111 | }
|
---|
2112 | }
|
---|
2113 | }
|
---|
2114 | /* Check if error occurred */
|
---|
2115 | if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_ERRIE) != RESET)
|
---|
2116 | {
|
---|
2117 | /* If write Error occurred */
|
---|
2118 | if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_IT_WRERR) != RESET)
|
---|
2119 | {
|
---|
2120 | hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE;
|
---|
2121 | }
|
---|
2122 | /* If read Error occurred */
|
---|
2123 | if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_IT_RDERR) != RESET)
|
---|
2124 | {
|
---|
2125 | hcryp->ErrorCode |= HAL_CRYP_ERROR_READ;
|
---|
2126 | }
|
---|
2127 | }
|
---|
2128 | #endif /* End AES or CRYP */
|
---|
2129 | }
|
---|
2130 |
|
---|
2131 | /**
|
---|
2132 | * @brief Return the CRYP error code.
|
---|
2133 | * @param hcryp : pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2134 | * the configuration information for the CRYP IP
|
---|
2135 | * @retval CRYP error code
|
---|
2136 | */
|
---|
2137 | uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
|
---|
2138 | {
|
---|
2139 | return hcryp->ErrorCode;
|
---|
2140 | }
|
---|
2141 |
|
---|
2142 | /**
|
---|
2143 | * @brief Returns the CRYP state.
|
---|
2144 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2145 | * the configuration information for CRYP module.
|
---|
2146 | * @retval HAL state
|
---|
2147 | */
|
---|
2148 | HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
|
---|
2149 | {
|
---|
2150 | return hcryp->State;
|
---|
2151 | }
|
---|
2152 |
|
---|
2153 | /**
|
---|
2154 | * @brief Input FIFO transfer completed callback.
|
---|
2155 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2156 | * the configuration information for CRYP module.
|
---|
2157 | * @retval None
|
---|
2158 | */
|
---|
2159 | __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
|
---|
2160 | {
|
---|
2161 | /* Prevent unused argument(s) compilation warning */
|
---|
2162 | UNUSED(hcryp);
|
---|
2163 |
|
---|
2164 | /* NOTE : This function should not be modified, when the callback is needed,
|
---|
2165 | the HAL_CRYP_InCpltCallback can be implemented in the user file
|
---|
2166 | */
|
---|
2167 | }
|
---|
2168 |
|
---|
2169 | /**
|
---|
2170 | * @brief Output FIFO transfer completed callback.
|
---|
2171 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2172 | * the configuration information for CRYP module.
|
---|
2173 | * @retval None
|
---|
2174 | */
|
---|
2175 | __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
|
---|
2176 | {
|
---|
2177 | /* Prevent unused argument(s) compilation warning */
|
---|
2178 | UNUSED(hcryp);
|
---|
2179 |
|
---|
2180 | /* NOTE : This function should not be modified, when the callback is needed,
|
---|
2181 | the HAL_CRYP_OutCpltCallback can be implemented in the user file
|
---|
2182 | */
|
---|
2183 | }
|
---|
2184 |
|
---|
2185 | /**
|
---|
2186 | * @brief CRYP error callback.
|
---|
2187 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2188 | * the configuration information for CRYP module.
|
---|
2189 | * @retval None
|
---|
2190 | */
|
---|
2191 | __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
|
---|
2192 | {
|
---|
2193 | /* Prevent unused argument(s) compilation warning */
|
---|
2194 | UNUSED(hcryp);
|
---|
2195 |
|
---|
2196 | /* NOTE : This function Should not be modified, when the callback is needed,
|
---|
2197 | the HAL_CRYP_ErrorCallback could be implemented in the user file
|
---|
2198 | */
|
---|
2199 | }
|
---|
2200 | /**
|
---|
2201 | * @}
|
---|
2202 | */
|
---|
2203 |
|
---|
2204 | /* Private functions ---------------------------------------------------------*/
|
---|
2205 | /** @addtogroup CRYP_Private_Functions
|
---|
2206 | * @{
|
---|
2207 | */
|
---|
2208 |
|
---|
2209 | #if defined (CRYP)
|
---|
2210 |
|
---|
2211 | /**
|
---|
2212 | * @brief Encryption in ECB/CBC Algorithm with DES/TDES standard.
|
---|
2213 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2214 | * the configuration information for CRYP module
|
---|
2215 | * @param Timeout: specify Timeout value
|
---|
2216 | * @retval HAL status
|
---|
2217 | */
|
---|
2218 | static HAL_StatusTypeDef CRYP_TDES_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
2219 | {
|
---|
2220 | uint32_t temp[2]; /* Temporary CrypOutBuff */
|
---|
2221 | uint16_t incount; /* Temporary CrypInCount Value */
|
---|
2222 | uint16_t outcount; /* Temporary CrypOutCount Value */
|
---|
2223 | uint32_t i;
|
---|
2224 |
|
---|
2225 | /* Enable CRYP */
|
---|
2226 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2227 | /*Temporary CrypOutCount Value*/
|
---|
2228 | outcount = hcryp->CrypOutCount;
|
---|
2229 |
|
---|
2230 | /*Start processing*/
|
---|
2231 | while ((hcryp->CrypInCount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
|
---|
2232 | {
|
---|
2233 | /* Temporary CrypInCount Value */
|
---|
2234 | incount = hcryp->CrypInCount;
|
---|
2235 | /* Write plain data and get cipher data */
|
---|
2236 | if (((hcryp->Instance->SR & CRYP_FLAG_IFNF) != 0x0U) && (incount < (hcryp->Size / 4U)))
|
---|
2237 | {
|
---|
2238 | /* Write the input block in the IN FIFO */
|
---|
2239 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2240 | hcryp->CrypInCount++;
|
---|
2241 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2242 | hcryp->CrypInCount++;
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | /* Wait for OFNE flag to be raised */
|
---|
2246 | if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
---|
2247 | {
|
---|
2248 | /* Disable the CRYP peripheral clock */
|
---|
2249 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2250 |
|
---|
2251 | /* Change state & errorCode*/
|
---|
2252 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
2253 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2254 |
|
---|
2255 | /* Process unlocked */
|
---|
2256 | __HAL_UNLOCK(hcryp);
|
---|
2257 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
2258 | /*Call registered error callback*/
|
---|
2259 | hcryp->ErrorCallback(hcryp);
|
---|
2260 | #else
|
---|
2261 | /*Call legacy weak error callback*/
|
---|
2262 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
2263 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
2264 | }
|
---|
2265 |
|
---|
2266 | /*Temporary CrypOutCount Value*/
|
---|
2267 | outcount = hcryp->CrypOutCount;
|
---|
2268 |
|
---|
2269 | if (((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U) && (outcount < (hcryp->Size / 4U)))
|
---|
2270 | {
|
---|
2271 | /* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
|
---|
2272 | for (i = 0U; i < 2U; i++)
|
---|
2273 | {
|
---|
2274 | temp[i] = hcryp->Instance->DOUT;
|
---|
2275 | }
|
---|
2276 | i = 0U;
|
---|
2277 | while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 2U))
|
---|
2278 | {
|
---|
2279 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
2280 | hcryp->CrypOutCount++;
|
---|
2281 | i++;
|
---|
2282 | }
|
---|
2283 | }
|
---|
2284 | /*Temporary CrypOutCount Value*/
|
---|
2285 | outcount = hcryp->CrypOutCount;
|
---|
2286 | }
|
---|
2287 | /* Disable CRYP */
|
---|
2288 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2289 | /* Change the CRYP state */
|
---|
2290 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2291 |
|
---|
2292 | /* Return function status */
|
---|
2293 | return HAL_OK;
|
---|
2294 | }
|
---|
2295 |
|
---|
2296 | /**
|
---|
2297 | * @brief CRYP block input/output data handling under interruption with DES/TDES standard.
|
---|
2298 | * @note The function is called under interruption only, once
|
---|
2299 | * interruptions have been enabled by CRYP_Decrypt_IT() and CRYP_Encrypt_IT().
|
---|
2300 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2301 | * the configuration information for CRYP module.
|
---|
2302 | * @retval none
|
---|
2303 | */
|
---|
2304 | static void CRYP_TDES_IT(CRYP_HandleTypeDef *hcryp)
|
---|
2305 | {
|
---|
2306 | uint32_t temp[2]; /* Temporary CrypOutBuff */
|
---|
2307 | uint32_t i;
|
---|
2308 |
|
---|
2309 | if (hcryp->State == HAL_CRYP_STATE_BUSY)
|
---|
2310 | {
|
---|
2311 | if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI) != 0x0U)
|
---|
2312 | {
|
---|
2313 | if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_INRIS) != 0x0U)
|
---|
2314 | {
|
---|
2315 | /* Write input block in the IN FIFO */
|
---|
2316 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2317 | hcryp->CrypInCount++;
|
---|
2318 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2319 | hcryp->CrypInCount++;
|
---|
2320 |
|
---|
2321 | if (hcryp->CrypInCount == ((uint16_t)(hcryp->Size) / 4U))
|
---|
2322 | {
|
---|
2323 | /* Disable interruption */
|
---|
2324 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
---|
2325 | /* Call the input data transfer complete callback */
|
---|
2326 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
---|
2327 | /*Call registered Input complete callback*/
|
---|
2328 | hcryp->InCpltCallback(hcryp);
|
---|
2329 | #else
|
---|
2330 | /*Call legacy weak Input complete callback*/
|
---|
2331 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
2332 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
2333 | }
|
---|
2334 | }
|
---|
2335 | }
|
---|
2336 | if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI) != 0x0U)
|
---|
2337 | {
|
---|
2338 | if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_OUTRIS) != 0x0U)
|
---|
2339 | {
|
---|
2340 | /* Read the output block from the Output FIFO and put them in temporary Buffer then get CrypOutBuff from temporary buffer */
|
---|
2341 | for (i = 0U; i < 2U; i++)
|
---|
2342 | {
|
---|
2343 | temp[i] = hcryp->Instance->DOUT;
|
---|
2344 | }
|
---|
2345 | i = 0U;
|
---|
2346 | while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 2U))
|
---|
2347 | {
|
---|
2348 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
2349 | hcryp->CrypOutCount++;
|
---|
2350 | i++;
|
---|
2351 | }
|
---|
2352 | if (hcryp->CrypOutCount == ((uint16_t)(hcryp->Size) / 4U))
|
---|
2353 | {
|
---|
2354 | /* Disable interruption */
|
---|
2355 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
|
---|
2356 |
|
---|
2357 | /* Disable CRYP */
|
---|
2358 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2359 |
|
---|
2360 | /* Process unlocked */
|
---|
2361 | __HAL_UNLOCK(hcryp);
|
---|
2362 |
|
---|
2363 | /* Change the CRYP state */
|
---|
2364 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2365 | /* Call output transfer complete callback */
|
---|
2366 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
2367 | /*Call registered Output complete callback*/
|
---|
2368 | hcryp->OutCpltCallback(hcryp);
|
---|
2369 | #else
|
---|
2370 | /*Call legacy weak Output complete callback*/
|
---|
2371 | HAL_CRYP_OutCpltCallback(hcryp);
|
---|
2372 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
2373 | }
|
---|
2374 | }
|
---|
2375 | }
|
---|
2376 | }
|
---|
2377 | else
|
---|
2378 | {
|
---|
2379 | /* Process unlocked */
|
---|
2380 | __HAL_UNLOCK(hcryp);
|
---|
2381 | /* Busy error code field */
|
---|
2382 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
2383 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
2384 | /*Call registered error callback*/
|
---|
2385 | hcryp->ErrorCallback(hcryp);
|
---|
2386 | #else
|
---|
2387 | /*Call legacy weak error callback*/
|
---|
2388 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
2389 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
2390 | }
|
---|
2391 | }
|
---|
2392 |
|
---|
2393 | #endif /* CRYP */
|
---|
2394 |
|
---|
2395 | /**
|
---|
2396 | * @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard
|
---|
2397 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
---|
2398 | * @param Timeout: specify Timeout value
|
---|
2399 | * @retval HAL status
|
---|
2400 | */
|
---|
2401 | static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
2402 | {
|
---|
2403 | uint16_t outcount; /* Temporary CrypOutCount Value */
|
---|
2404 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
2405 |
|
---|
2406 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
2407 | {
|
---|
2408 | if (hcryp->KeyIVConfig == 1U)
|
---|
2409 | {
|
---|
2410 | /* If the Key and IV configuration has to be done only once
|
---|
2411 | and if it has already been done, skip it */
|
---|
2412 | DoKeyIVConfig = 0U;
|
---|
2413 | }
|
---|
2414 | else
|
---|
2415 | {
|
---|
2416 | /* If the Key and IV configuration has to be done only once
|
---|
2417 | and if it has not been done already, do it and set KeyIVConfig
|
---|
2418 | to keep track it won't have to be done again next time */
|
---|
2419 | hcryp->KeyIVConfig = 1U;
|
---|
2420 | }
|
---|
2421 | }
|
---|
2422 |
|
---|
2423 | if (DoKeyIVConfig == 1U)
|
---|
2424 | {
|
---|
2425 |
|
---|
2426 | /* Set the Key*/
|
---|
2427 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2428 |
|
---|
2429 | if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
---|
2430 | {
|
---|
2431 | /* Set the Initialization Vector*/
|
---|
2432 | #if defined (AES)
|
---|
2433 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
2434 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
2435 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
2436 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
2437 | #else /* CRYP */
|
---|
2438 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
2439 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
2440 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
2441 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
2442 | #endif /* End AES or CRYP */
|
---|
2443 | }
|
---|
2444 | } /* if (DoKeyIVConfig == 1U) */
|
---|
2445 |
|
---|
2446 | /* Set the phase */
|
---|
2447 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
2448 |
|
---|
2449 | /* Enable CRYP */
|
---|
2450 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2451 |
|
---|
2452 | /*Temporary CrypOutCount Value*/
|
---|
2453 | outcount = hcryp->CrypOutCount;
|
---|
2454 |
|
---|
2455 | while ((hcryp->CrypInCount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
|
---|
2456 | {
|
---|
2457 | /* Write plain Ddta and get cipher data */
|
---|
2458 | CRYP_AES_ProcessData(hcryp, Timeout);
|
---|
2459 | /*Temporary CrypOutCount Value*/
|
---|
2460 | outcount = hcryp->CrypOutCount;
|
---|
2461 | }
|
---|
2462 |
|
---|
2463 | /* Disable CRYP */
|
---|
2464 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2465 |
|
---|
2466 | /* Change the CRYP state */
|
---|
2467 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2468 |
|
---|
2469 | /* Return function status */
|
---|
2470 | return HAL_OK;
|
---|
2471 | }
|
---|
2472 |
|
---|
2473 | /**
|
---|
2474 | * @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
|
---|
2475 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2476 | * the configuration information for CRYP module
|
---|
2477 | * @retval HAL status
|
---|
2478 | */
|
---|
2479 | static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp)
|
---|
2480 | {
|
---|
2481 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
2482 |
|
---|
2483 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
2484 | {
|
---|
2485 | if (hcryp->KeyIVConfig == 1U)
|
---|
2486 | {
|
---|
2487 | /* If the Key and IV configuration has to be done only once
|
---|
2488 | and if it has already been done, skip it */
|
---|
2489 | DoKeyIVConfig = 0U;
|
---|
2490 | }
|
---|
2491 | else
|
---|
2492 | {
|
---|
2493 | /* If the Key and IV configuration has to be done only once
|
---|
2494 | and if it has not been done already, do it and set KeyIVConfig
|
---|
2495 | to keep track it won't have to be done again next time */
|
---|
2496 | hcryp->KeyIVConfig = 1U;
|
---|
2497 | }
|
---|
2498 | }
|
---|
2499 |
|
---|
2500 | if (DoKeyIVConfig == 1U)
|
---|
2501 | {
|
---|
2502 | /* Set the Key*/
|
---|
2503 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2504 |
|
---|
2505 | if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
---|
2506 | {
|
---|
2507 | /* Set the Initialization Vector*/
|
---|
2508 | #if defined (AES)
|
---|
2509 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
2510 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
2511 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
2512 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
2513 |
|
---|
2514 | #else /* CRYP */
|
---|
2515 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
2516 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
2517 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
2518 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
2519 | #endif /* End AES or CRYP */
|
---|
2520 | }
|
---|
2521 | } /* if (DoKeyIVConfig == 1U) */
|
---|
2522 |
|
---|
2523 | /* Set the phase */
|
---|
2524 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
2525 |
|
---|
2526 | if (hcryp->Size != 0U)
|
---|
2527 | {
|
---|
2528 | #if defined (AES)
|
---|
2529 |
|
---|
2530 | /* Enable computation complete flag and error interrupts */
|
---|
2531 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
---|
2532 |
|
---|
2533 | /* Enable CRYP */
|
---|
2534 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2535 |
|
---|
2536 | /* Write the input block in the IN FIFO */
|
---|
2537 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2538 | hcryp->CrypInCount++;
|
---|
2539 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2540 | hcryp->CrypInCount++;
|
---|
2541 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2542 | hcryp->CrypInCount++;
|
---|
2543 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2544 | hcryp->CrypInCount++;
|
---|
2545 |
|
---|
2546 | #else /* CRYP */
|
---|
2547 |
|
---|
2548 | /* Enable interrupts */
|
---|
2549 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
---|
2550 |
|
---|
2551 | /* Enable CRYP */
|
---|
2552 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2553 |
|
---|
2554 | #endif /* End AES or CRYP */
|
---|
2555 | }
|
---|
2556 | else
|
---|
2557 | {
|
---|
2558 | /* Change the CRYP state */
|
---|
2559 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2560 |
|
---|
2561 | /* Process unlocked */
|
---|
2562 | __HAL_UNLOCK(hcryp);
|
---|
2563 | }
|
---|
2564 |
|
---|
2565 | /* Return function status */
|
---|
2566 | return HAL_OK;
|
---|
2567 | }
|
---|
2568 |
|
---|
2569 | /**
|
---|
2570 | * @brief Decryption in ECB/CBC & CTR mode with AES Standard
|
---|
2571 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure
|
---|
2572 | * @param Timeout: Specify Timeout value
|
---|
2573 | * @retval HAL status
|
---|
2574 | */
|
---|
2575 | static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
2576 | {
|
---|
2577 | uint16_t outcount; /* Temporary CrypOutCount Value */
|
---|
2578 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
2579 |
|
---|
2580 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
2581 | {
|
---|
2582 | if (hcryp->KeyIVConfig == 1U)
|
---|
2583 | {
|
---|
2584 | /* If the Key and IV configuration has to be done only once
|
---|
2585 | and if it has already been done, skip it */
|
---|
2586 | DoKeyIVConfig = 0U;
|
---|
2587 | }
|
---|
2588 | else
|
---|
2589 | {
|
---|
2590 | /* If the Key and IV configuration has to be done only once
|
---|
2591 | and if it has not been done already, do it and set KeyIVConfig
|
---|
2592 | to keep track it won't have to be done again next time */
|
---|
2593 | hcryp->KeyIVConfig = 1U;
|
---|
2594 | }
|
---|
2595 | }
|
---|
2596 |
|
---|
2597 | if (DoKeyIVConfig == 1U)
|
---|
2598 | {
|
---|
2599 | /* Key preparation for ECB/CBC */
|
---|
2600 | if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
---|
2601 | {
|
---|
2602 | #if defined (AES)
|
---|
2603 | if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
|
---|
2604 | {
|
---|
2605 | /* Set key preparation for decryption operating mode*/
|
---|
2606 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
---|
2607 |
|
---|
2608 | /* Set the Key*/
|
---|
2609 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2610 |
|
---|
2611 | /* Enable CRYP */
|
---|
2612 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2613 |
|
---|
2614 | /* Wait for CCF flag to be raised */
|
---|
2615 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
2616 | {
|
---|
2617 | /* Disable the CRYP peripheral clock */
|
---|
2618 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2619 |
|
---|
2620 | /* Change state & error code*/
|
---|
2621 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
2622 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2623 |
|
---|
2624 | /* Process unlocked */
|
---|
2625 | __HAL_UNLOCK(hcryp);
|
---|
2626 | return HAL_ERROR;
|
---|
2627 | }
|
---|
2628 | /* Clear CCF Flag */
|
---|
2629 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
2630 |
|
---|
2631 | /* Return to decryption operating mode(Mode 3)*/
|
---|
2632 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
---|
2633 | }
|
---|
2634 | else /*Mode 4 : decryption & Key preparation*/
|
---|
2635 | {
|
---|
2636 | /* Set the Key*/
|
---|
2637 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2638 |
|
---|
2639 | /* Set decryption & Key preparation operating mode*/
|
---|
2640 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
---|
2641 | }
|
---|
2642 | #else /* CRYP */
|
---|
2643 | /* change ALGOMODE to key preparation for decryption*/
|
---|
2644 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY);
|
---|
2645 |
|
---|
2646 | /* Set the Key*/
|
---|
2647 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2648 |
|
---|
2649 | /* Enable CRYP */
|
---|
2650 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2651 |
|
---|
2652 | /* Wait for BUSY flag to be raised */
|
---|
2653 | if (CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
|
---|
2654 | {
|
---|
2655 | /* Disable the CRYP peripheral clock */
|
---|
2656 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2657 |
|
---|
2658 | /* Change state */
|
---|
2659 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
2660 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2661 |
|
---|
2662 | /* Process unlocked */
|
---|
2663 | __HAL_UNLOCK(hcryp);
|
---|
2664 | return HAL_ERROR;
|
---|
2665 | }
|
---|
2666 | /* Turn back to ALGOMODE of the configuration */
|
---|
2667 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm);
|
---|
2668 |
|
---|
2669 | #endif /* End AES or CRYP */
|
---|
2670 | }
|
---|
2671 | else /*Algorithm CTR */
|
---|
2672 | {
|
---|
2673 | /* Set the Key*/
|
---|
2674 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2675 | }
|
---|
2676 |
|
---|
2677 | /* Set IV */
|
---|
2678 | if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
---|
2679 | {
|
---|
2680 | /* Set the Initialization Vector*/
|
---|
2681 | #if defined (AES)
|
---|
2682 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
2683 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
2684 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
2685 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
2686 | #else /* CRYP */
|
---|
2687 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
2688 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
2689 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
2690 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
2691 | #endif /* End AES or CRYP */
|
---|
2692 | }
|
---|
2693 | } /* if (DoKeyIVConfig == 1U) */
|
---|
2694 | /* Set the phase */
|
---|
2695 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
2696 |
|
---|
2697 | /* Enable CRYP */
|
---|
2698 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2699 |
|
---|
2700 | /*Temporary CrypOutCount Value*/
|
---|
2701 | outcount = hcryp->CrypOutCount;
|
---|
2702 |
|
---|
2703 | while ((hcryp->CrypInCount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
|
---|
2704 | {
|
---|
2705 | /* Write plain data and get cipher data */
|
---|
2706 | CRYP_AES_ProcessData(hcryp, Timeout);
|
---|
2707 | /*Temporary CrypOutCount Value*/
|
---|
2708 | outcount = hcryp->CrypOutCount;
|
---|
2709 | }
|
---|
2710 |
|
---|
2711 | /* Disable CRYP */
|
---|
2712 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2713 |
|
---|
2714 | /* Change the CRYP state */
|
---|
2715 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2716 |
|
---|
2717 | /* Return function status */
|
---|
2718 | return HAL_OK;
|
---|
2719 | }
|
---|
2720 | /**
|
---|
2721 | * @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
|
---|
2722 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2723 | * the configuration information for CRYP module
|
---|
2724 | * @retval HAL status
|
---|
2725 | */
|
---|
2726 | static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp)
|
---|
2727 | {
|
---|
2728 | __IO uint32_t count = 0U;
|
---|
2729 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
2730 |
|
---|
2731 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
2732 | {
|
---|
2733 | if (hcryp->KeyIVConfig == 1U)
|
---|
2734 | {
|
---|
2735 | /* If the Key and IV configuration has to be done only once
|
---|
2736 | and if it has already been done, skip it */
|
---|
2737 | DoKeyIVConfig = 0U;
|
---|
2738 | }
|
---|
2739 | else
|
---|
2740 | {
|
---|
2741 | /* If the Key and IV configuration has to be done only once
|
---|
2742 | and if it has not been done already, do it and set KeyIVConfig
|
---|
2743 | to keep track it won't have to be done again next time */
|
---|
2744 | hcryp->KeyIVConfig = 1U;
|
---|
2745 | }
|
---|
2746 | }
|
---|
2747 |
|
---|
2748 | if (DoKeyIVConfig == 1U)
|
---|
2749 | {
|
---|
2750 | /* Key preparation for ECB/CBC */
|
---|
2751 | if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
---|
2752 | {
|
---|
2753 | #if defined (AES)
|
---|
2754 | if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
|
---|
2755 | {
|
---|
2756 | /* Set key preparation for decryption operating mode*/
|
---|
2757 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
---|
2758 |
|
---|
2759 | /* Set the Key*/
|
---|
2760 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2761 |
|
---|
2762 | /* Enable CRYP */
|
---|
2763 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2764 |
|
---|
2765 | /* Wait for CCF flag to be raised */
|
---|
2766 | count = CRYP_TIMEOUT_KEYPREPARATION;
|
---|
2767 | do
|
---|
2768 | {
|
---|
2769 | count-- ;
|
---|
2770 | if (count == 0U)
|
---|
2771 | {
|
---|
2772 | /* Disable the CRYP peripheral clock */
|
---|
2773 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2774 |
|
---|
2775 | /* Change state */
|
---|
2776 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
2777 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2778 |
|
---|
2779 | /* Process unlocked */
|
---|
2780 | __HAL_UNLOCK(hcryp);
|
---|
2781 | return HAL_ERROR;
|
---|
2782 | }
|
---|
2783 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
2784 |
|
---|
2785 | /* Clear CCF Flag */
|
---|
2786 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
2787 |
|
---|
2788 | /* Return to decryption operating mode(Mode 3)*/
|
---|
2789 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
---|
2790 | }
|
---|
2791 | else /*Mode 4 : decryption & key preparation*/
|
---|
2792 | {
|
---|
2793 | /* Set the Key*/
|
---|
2794 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2795 |
|
---|
2796 | /* Set decryption & key preparation operating mode*/
|
---|
2797 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
---|
2798 | }
|
---|
2799 | #else /* CRYP */
|
---|
2800 |
|
---|
2801 | /* change ALGOMODE to key preparation for decryption*/
|
---|
2802 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY);
|
---|
2803 |
|
---|
2804 | /* Set the Key*/
|
---|
2805 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2806 |
|
---|
2807 | /* Enable CRYP */
|
---|
2808 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2809 |
|
---|
2810 | /* Wait for BUSY flag to be raised */
|
---|
2811 | count = CRYP_TIMEOUT_KEYPREPARATION;
|
---|
2812 | do
|
---|
2813 | {
|
---|
2814 | count-- ;
|
---|
2815 | if (count == 0U)
|
---|
2816 | {
|
---|
2817 | /* Change state */
|
---|
2818 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
2819 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2820 |
|
---|
2821 | /* Process unlocked */
|
---|
2822 | __HAL_UNLOCK(hcryp);
|
---|
2823 | return HAL_ERROR;
|
---|
2824 | }
|
---|
2825 | } while (HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
|
---|
2826 |
|
---|
2827 | /* Turn back to ALGOMODE of the configuration */
|
---|
2828 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm);
|
---|
2829 |
|
---|
2830 | #endif /* End AES or CRYP */
|
---|
2831 | }
|
---|
2832 |
|
---|
2833 | else /*Algorithm CTR */
|
---|
2834 | {
|
---|
2835 | /* Set the Key*/
|
---|
2836 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2837 | }
|
---|
2838 |
|
---|
2839 | /* Set IV */
|
---|
2840 | if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
---|
2841 | {
|
---|
2842 | /* Set the Initialization Vector*/
|
---|
2843 | #if defined (AES)
|
---|
2844 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
2845 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
2846 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
2847 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
2848 | #else /* CRYP */
|
---|
2849 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
2850 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
2851 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
2852 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
2853 | #endif /* End AES or CRYP */
|
---|
2854 | }
|
---|
2855 | } /* if (DoKeyIVConfig == 1U) */
|
---|
2856 |
|
---|
2857 | /* Set the phase */
|
---|
2858 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
2859 | if (hcryp->Size != 0U)
|
---|
2860 | {
|
---|
2861 |
|
---|
2862 | #if defined (AES)
|
---|
2863 |
|
---|
2864 | /* Enable computation complete flag and error interrupts */
|
---|
2865 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
---|
2866 |
|
---|
2867 | /* Enable CRYP */
|
---|
2868 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2869 |
|
---|
2870 | /* Write the input block in the IN FIFO */
|
---|
2871 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2872 | hcryp->CrypInCount++;
|
---|
2873 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2874 | hcryp->CrypInCount++;
|
---|
2875 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2876 | hcryp->CrypInCount++;
|
---|
2877 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
2878 | hcryp->CrypInCount++;
|
---|
2879 |
|
---|
2880 | #else /* CRYP */
|
---|
2881 |
|
---|
2882 | /* Enable interrupts */
|
---|
2883 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
---|
2884 |
|
---|
2885 | /* Enable CRYP */
|
---|
2886 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2887 |
|
---|
2888 | #endif /* End AES or CRYP */
|
---|
2889 | }
|
---|
2890 | else
|
---|
2891 | {
|
---|
2892 | /* Process locked */
|
---|
2893 | __HAL_UNLOCK(hcryp);
|
---|
2894 |
|
---|
2895 | /* Change the CRYP state */
|
---|
2896 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2897 | }
|
---|
2898 |
|
---|
2899 | /* Return function status */
|
---|
2900 | return HAL_OK;
|
---|
2901 | }
|
---|
2902 | /**
|
---|
2903 | * @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode
|
---|
2904 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
2905 | * the configuration information for CRYP module
|
---|
2906 | * @retval HAL status
|
---|
2907 | */
|
---|
2908 | static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp)
|
---|
2909 | {
|
---|
2910 | __IO uint32_t count = 0U;
|
---|
2911 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
2912 |
|
---|
2913 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
2914 | {
|
---|
2915 | if (hcryp->KeyIVConfig == 1U)
|
---|
2916 | {
|
---|
2917 | /* If the Key and IV configuration has to be done only once
|
---|
2918 | and if it has already been done, skip it */
|
---|
2919 | DoKeyIVConfig = 0U;
|
---|
2920 | }
|
---|
2921 | else
|
---|
2922 | {
|
---|
2923 | /* If the Key and IV configuration has to be done only once
|
---|
2924 | and if it has not been done already, do it and set KeyIVConfig
|
---|
2925 | to keep track it won't have to be done again next time */
|
---|
2926 | hcryp->KeyIVConfig = 1U;
|
---|
2927 | }
|
---|
2928 | }
|
---|
2929 | if (DoKeyIVConfig == 1U)
|
---|
2930 | {
|
---|
2931 | /* Key preparation for ECB/CBC */
|
---|
2932 | if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
---|
2933 | {
|
---|
2934 | #if defined (AES)
|
---|
2935 | if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/
|
---|
2936 | {
|
---|
2937 | /* Set key preparation for decryption operating mode*/
|
---|
2938 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
---|
2939 |
|
---|
2940 | /* Set the Key*/
|
---|
2941 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2942 |
|
---|
2943 | /* Enable CRYP */
|
---|
2944 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2945 |
|
---|
2946 | /* Wait for CCF flag to be raised */
|
---|
2947 | count = CRYP_TIMEOUT_KEYPREPARATION;
|
---|
2948 | do
|
---|
2949 | {
|
---|
2950 | count-- ;
|
---|
2951 | if (count == 0U)
|
---|
2952 | {
|
---|
2953 | /* Disable the CRYP peripheral clock */
|
---|
2954 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2955 |
|
---|
2956 | /* Change state */
|
---|
2957 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
2958 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
2959 |
|
---|
2960 | /* Process unlocked */
|
---|
2961 | __HAL_UNLOCK(hcryp);
|
---|
2962 | return HAL_ERROR;
|
---|
2963 | }
|
---|
2964 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
2965 |
|
---|
2966 | /* Clear CCF Flag */
|
---|
2967 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
2968 |
|
---|
2969 | /* Return to decryption operating mode(Mode 3)*/
|
---|
2970 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
---|
2971 | }
|
---|
2972 | else /*Mode 4 : decryption & key preparation*/
|
---|
2973 | {
|
---|
2974 | /* Set the Key*/
|
---|
2975 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2976 |
|
---|
2977 | /* Set decryption & Key preparation operating mode*/
|
---|
2978 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
---|
2979 | }
|
---|
2980 | #else /* CRYP */
|
---|
2981 | /* change ALGOMODE to key preparation for decryption*/
|
---|
2982 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_CR_ALGOMODE_AES_KEY);
|
---|
2983 |
|
---|
2984 | /* Set the Key*/
|
---|
2985 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
2986 |
|
---|
2987 | /* Enable CRYP */
|
---|
2988 | __HAL_CRYP_ENABLE(hcryp);
|
---|
2989 |
|
---|
2990 | /* Wait for BUSY flag to be raised */
|
---|
2991 | count = CRYP_TIMEOUT_KEYPREPARATION;
|
---|
2992 | do
|
---|
2993 | {
|
---|
2994 | count-- ;
|
---|
2995 | if (count == 0U)
|
---|
2996 | {
|
---|
2997 | /* Disable the CRYP peripheral clock */
|
---|
2998 | __HAL_CRYP_DISABLE(hcryp);
|
---|
2999 |
|
---|
3000 | /* Change state */
|
---|
3001 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
3002 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3003 |
|
---|
3004 | /* Process unlocked */
|
---|
3005 | __HAL_UNLOCK(hcryp);
|
---|
3006 | return HAL_ERROR;
|
---|
3007 | }
|
---|
3008 | } while (HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
|
---|
3009 |
|
---|
3010 | /* Turn back to ALGOMODE of the configuration */
|
---|
3011 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, hcryp->Init.Algorithm);
|
---|
3012 |
|
---|
3013 | #endif /* End AES or CRYP */
|
---|
3014 | }
|
---|
3015 | else /*Algorithm CTR */
|
---|
3016 | {
|
---|
3017 | /* Set the Key*/
|
---|
3018 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
3019 | }
|
---|
3020 |
|
---|
3021 | if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
---|
3022 | {
|
---|
3023 | /* Set the Initialization Vector*/
|
---|
3024 | #if defined (AES)
|
---|
3025 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
3026 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
3027 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
3028 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
3029 | #else /* CRYP */
|
---|
3030 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
3031 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
3032 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
3033 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
3034 | #endif /* End AES or CRYP */
|
---|
3035 | }
|
---|
3036 | } /* if (DoKeyIVConfig == 1U) */
|
---|
3037 |
|
---|
3038 | /* Set the phase */
|
---|
3039 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
3040 |
|
---|
3041 | if (hcryp->Size != 0U)
|
---|
3042 | {
|
---|
3043 | /* Set the input and output addresses and start DMA transfer */
|
---|
3044 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
3045 | }
|
---|
3046 | else
|
---|
3047 | {
|
---|
3048 | /* Process unlocked */
|
---|
3049 | __HAL_UNLOCK(hcryp);
|
---|
3050 |
|
---|
3051 | /* Change the CRYP state */
|
---|
3052 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3053 | }
|
---|
3054 |
|
---|
3055 | /* Return function status */
|
---|
3056 | return HAL_OK;
|
---|
3057 | }
|
---|
3058 |
|
---|
3059 |
|
---|
3060 | /**
|
---|
3061 | * @brief DMA CRYP input data process complete callback.
|
---|
3062 | * @param hdma: DMA handle
|
---|
3063 | * @retval None
|
---|
3064 | */
|
---|
3065 | static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
|
---|
3066 | {
|
---|
3067 | CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
---|
3068 |
|
---|
3069 | /* Disable the DMA transfer for input FIFO request by resetting the DIEN bit
|
---|
3070 | in the DMACR register */
|
---|
3071 | #if defined (CRYP)
|
---|
3072 | hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
|
---|
3073 |
|
---|
3074 | #else /* AES */
|
---|
3075 | CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
|
---|
3076 |
|
---|
3077 | /* TinyAES2, No output on CCM AES, unlock should be done when input data process complete */
|
---|
3078 | if ((hcryp->Init.Algorithm & CRYP_AES_CCM) == CRYP_AES_CCM)
|
---|
3079 | {
|
---|
3080 | /* Clear CCF flag */
|
---|
3081 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
3082 |
|
---|
3083 | /* Change the CRYP state to ready */
|
---|
3084 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3085 |
|
---|
3086 | /* Process Unlocked */
|
---|
3087 | __HAL_UNLOCK(hcryp);
|
---|
3088 | }
|
---|
3089 | #endif /* End AES or CRYP */
|
---|
3090 |
|
---|
3091 | /* Call input data transfer complete callback */
|
---|
3092 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3093 | /*Call registered Input complete callback*/
|
---|
3094 | hcryp->InCpltCallback(hcryp);
|
---|
3095 | #else
|
---|
3096 | /*Call legacy weak Input complete callback*/
|
---|
3097 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
3098 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3099 | }
|
---|
3100 |
|
---|
3101 | /**
|
---|
3102 | * @brief DMA CRYP output data process complete callback.
|
---|
3103 | * @param hdma: DMA handle
|
---|
3104 | * @retval None
|
---|
3105 | */
|
---|
3106 | static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
|
---|
3107 | {
|
---|
3108 | CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
---|
3109 |
|
---|
3110 | /* Disable the DMA transfer for output FIFO request by resetting
|
---|
3111 | the DOEN bit in the DMACR register */
|
---|
3112 |
|
---|
3113 | #if defined (CRYP)
|
---|
3114 |
|
---|
3115 | hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
|
---|
3116 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
3117 | if ((hcryp->Init.Algorithm & CRYP_AES_GCM) != CRYP_AES_GCM)
|
---|
3118 | {
|
---|
3119 | /* Disable CRYP (not allowed in GCM)*/
|
---|
3120 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3121 | }
|
---|
3122 |
|
---|
3123 | #else /*NO GCM CCM */
|
---|
3124 | /* Disable CRYP */
|
---|
3125 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3126 | #endif /* GCM CCM defined*/
|
---|
3127 | #else /* AES */
|
---|
3128 |
|
---|
3129 | CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
|
---|
3130 |
|
---|
3131 | /* Clear CCF flag */
|
---|
3132 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
3133 |
|
---|
3134 | if ((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
|
---|
3135 | {
|
---|
3136 | /* Disable CRYP (not allowed in GCM)*/
|
---|
3137 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3138 | }
|
---|
3139 | #endif /* End AES or CRYP */
|
---|
3140 |
|
---|
3141 | /* Change the CRYP state to ready */
|
---|
3142 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3143 |
|
---|
3144 | /* Process unlocked */
|
---|
3145 | __HAL_UNLOCK(hcryp);
|
---|
3146 | /* Call output data transfer complete callback */
|
---|
3147 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3148 | /*Call registered Output complete callback*/
|
---|
3149 | hcryp->OutCpltCallback(hcryp);
|
---|
3150 | #else
|
---|
3151 | /*Call legacy weak Output complete callback*/
|
---|
3152 | HAL_CRYP_OutCpltCallback(hcryp);
|
---|
3153 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3154 | }
|
---|
3155 |
|
---|
3156 | /**
|
---|
3157 | * @brief DMA CRYP communication error callback.
|
---|
3158 | * @param hdma: DMA handle
|
---|
3159 | * @retval None
|
---|
3160 | */
|
---|
3161 | static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
|
---|
3162 | {
|
---|
3163 | CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
---|
3164 |
|
---|
3165 | /* Change the CRYP peripheral state */
|
---|
3166 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3167 |
|
---|
3168 | /* DMA error code field */
|
---|
3169 | hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
---|
3170 |
|
---|
3171 | #if defined (AES)
|
---|
3172 |
|
---|
3173 | /* Clear CCF flag */
|
---|
3174 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
3175 |
|
---|
3176 | #endif /* AES */
|
---|
3177 |
|
---|
3178 | /* Call error callback */
|
---|
3179 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3180 | /*Call registered error callback*/
|
---|
3181 | hcryp->ErrorCallback(hcryp);
|
---|
3182 | #else
|
---|
3183 | /*Call legacy weak error callback*/
|
---|
3184 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
3185 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3186 | }
|
---|
3187 |
|
---|
3188 | /**
|
---|
3189 | * @brief Set the DMA configuration and start the DMA transfer
|
---|
3190 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
3191 | * the configuration information for CRYP module
|
---|
3192 | * @param inputaddr: address of the input buffer
|
---|
3193 | * @param Size: size of the input buffer, must be a multiple of 16.
|
---|
3194 | * @param outputaddr: address of the output buffer
|
---|
3195 | * @retval None
|
---|
3196 | */
|
---|
3197 | static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
|
---|
3198 | {
|
---|
3199 | /* Set the CRYP DMA transfer complete callback */
|
---|
3200 | hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
|
---|
3201 |
|
---|
3202 | /* Set the DMA input error callback */
|
---|
3203 | hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
|
---|
3204 |
|
---|
3205 | /* Set the CRYP DMA transfer complete callback */
|
---|
3206 | hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
|
---|
3207 |
|
---|
3208 | /* Set the DMA output error callback */
|
---|
3209 | hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
|
---|
3210 |
|
---|
3211 | #if defined (CRYP)
|
---|
3212 |
|
---|
3213 | /* Enable CRYP */
|
---|
3214 | __HAL_CRYP_ENABLE(hcryp);
|
---|
3215 |
|
---|
3216 | /* Enable the input DMA Stream */
|
---|
3217 | if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DIN, Size) != HAL_OK)
|
---|
3218 | {
|
---|
3219 | /* DMA error code field */
|
---|
3220 | hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
---|
3221 |
|
---|
3222 | /* Call error callback */
|
---|
3223 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3224 | /*Call registered error callback*/
|
---|
3225 | hcryp->ErrorCallback(hcryp);
|
---|
3226 | #else
|
---|
3227 | /*Call legacy weak error callback*/
|
---|
3228 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
3229 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3230 | }
|
---|
3231 | /* Enable the output DMA Stream */
|
---|
3232 | if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size) != HAL_OK)
|
---|
3233 | {
|
---|
3234 | /* DMA error code field */
|
---|
3235 | hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
---|
3236 |
|
---|
3237 | /* Call error callback */
|
---|
3238 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3239 | /*Call registered error callback*/
|
---|
3240 | hcryp->ErrorCallback(hcryp);
|
---|
3241 | #else
|
---|
3242 | /*Call legacy weak error callback*/
|
---|
3243 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
3244 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3245 | }
|
---|
3246 | /* Enable In/Out DMA request */
|
---|
3247 | hcryp->Instance->DMACR = CRYP_DMACR_DOEN | CRYP_DMACR_DIEN;
|
---|
3248 |
|
---|
3249 | #else /* AES */
|
---|
3250 |
|
---|
3251 | if (((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
|
---|
3252 | && ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM))
|
---|
3253 | {
|
---|
3254 | /* Enable CRYP (not allowed in GCM & CCM)*/
|
---|
3255 | __HAL_CRYP_ENABLE(hcryp);
|
---|
3256 | }
|
---|
3257 |
|
---|
3258 | /* Enable the DMA input stream */
|
---|
3259 | if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK)
|
---|
3260 | {
|
---|
3261 | /* DMA error code field */
|
---|
3262 | hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
---|
3263 |
|
---|
3264 | /* Call error callback */
|
---|
3265 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3266 | /*Call registered error callback*/
|
---|
3267 | hcryp->ErrorCallback(hcryp);
|
---|
3268 | #else
|
---|
3269 | /*Call legacy weak error callback*/
|
---|
3270 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
3271 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3272 | }
|
---|
3273 | /* Enable the DMA output stream */
|
---|
3274 | if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size) != HAL_OK)
|
---|
3275 | {
|
---|
3276 | /* DMA error code field */
|
---|
3277 | hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
---|
3278 |
|
---|
3279 | /* Call error callback */
|
---|
3280 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3281 | /*Call registered error callback*/
|
---|
3282 | hcryp->ErrorCallback(hcryp);
|
---|
3283 | #else
|
---|
3284 | /*Call legacy weak error callback*/
|
---|
3285 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
3286 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3287 | }
|
---|
3288 | /*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
|
---|
3289 | /* Enable In and Out DMA requests */
|
---|
3290 | if ((hcryp->Init.Algorithm & CRYP_AES_CCM) == CRYP_AES_CCM)
|
---|
3291 | {
|
---|
3292 | /* Enable only In DMA requests for CCM*/
|
---|
3293 | SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN));
|
---|
3294 | }
|
---|
3295 | else
|
---|
3296 | {
|
---|
3297 | /* Enable In and Out DMA requests */
|
---|
3298 | SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
|
---|
3299 | }
|
---|
3300 | #endif /* End AES or CRYP */
|
---|
3301 | }
|
---|
3302 |
|
---|
3303 | /**
|
---|
3304 | * @brief Process Data: Write Input data in polling mode and used in AES functions.
|
---|
3305 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
3306 | * the configuration information for CRYP module
|
---|
3307 | * @param Timeout: Specify Timeout value
|
---|
3308 | * @retval None
|
---|
3309 | */
|
---|
3310 | static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
3311 | {
|
---|
3312 |
|
---|
3313 | uint32_t temp[4]; /* Temporary CrypOutBuff */
|
---|
3314 | uint32_t i;
|
---|
3315 | #if defined (CRYP)
|
---|
3316 | uint16_t incount; /* Temporary CrypInCount Value */
|
---|
3317 | uint16_t outcount; /* Temporary CrypOutCount Value */
|
---|
3318 | #endif
|
---|
3319 |
|
---|
3320 | #if defined (CRYP)
|
---|
3321 |
|
---|
3322 | /*Temporary CrypOutCount Value*/
|
---|
3323 | incount = hcryp->CrypInCount;
|
---|
3324 |
|
---|
3325 | if (((hcryp->Instance->SR & CRYP_FLAG_IFNF) != 0x0U) && (incount < (hcryp->Size / 4U)))
|
---|
3326 | {
|
---|
3327 | /* Write the input block in the IN FIFO */
|
---|
3328 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3329 | hcryp->CrypInCount++;
|
---|
3330 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3331 | hcryp->CrypInCount++;
|
---|
3332 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3333 | hcryp->CrypInCount++;
|
---|
3334 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3335 | hcryp->CrypInCount++;
|
---|
3336 | }
|
---|
3337 |
|
---|
3338 | /* Wait for OFNE flag to be raised */
|
---|
3339 | if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
---|
3340 | {
|
---|
3341 | /* Disable the CRYP peripheral clock */
|
---|
3342 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3343 |
|
---|
3344 | /* Change state & error code*/
|
---|
3345 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
3346 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3347 |
|
---|
3348 | /* Process unlocked */
|
---|
3349 | __HAL_UNLOCK(hcryp);
|
---|
3350 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3351 | /*Call registered error callback*/
|
---|
3352 | hcryp->ErrorCallback(hcryp);
|
---|
3353 | #else
|
---|
3354 | /*Call legacy weak error callback*/
|
---|
3355 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
3356 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3357 | }
|
---|
3358 |
|
---|
3359 | /*Temporary CrypOutCount Value*/
|
---|
3360 | outcount = hcryp->CrypOutCount;
|
---|
3361 |
|
---|
3362 | if (((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U) && (outcount < (hcryp->Size / 4U)))
|
---|
3363 | {
|
---|
3364 | /* Read the output block from the Output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
|
---|
3365 | for (i = 0U; i < 4U; i++)
|
---|
3366 | {
|
---|
3367 | temp[i] = hcryp->Instance->DOUT;
|
---|
3368 | }
|
---|
3369 | i = 0U;
|
---|
3370 | while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 4U))
|
---|
3371 | {
|
---|
3372 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
3373 | hcryp->CrypOutCount++;
|
---|
3374 | i++;
|
---|
3375 | }
|
---|
3376 | }
|
---|
3377 |
|
---|
3378 | #else /* AES */
|
---|
3379 |
|
---|
3380 | /* Write the input block in the IN FIFO */
|
---|
3381 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3382 | hcryp->CrypInCount++;
|
---|
3383 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3384 | hcryp->CrypInCount++;
|
---|
3385 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3386 | hcryp->CrypInCount++;
|
---|
3387 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3388 | hcryp->CrypInCount++;
|
---|
3389 |
|
---|
3390 | /* Wait for CCF flag to be raised */
|
---|
3391 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
3392 | {
|
---|
3393 | /* Disable the CRYP peripheral clock */
|
---|
3394 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3395 |
|
---|
3396 | /* Change state */
|
---|
3397 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
3398 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3399 |
|
---|
3400 | /* Process unlocked */
|
---|
3401 | __HAL_UNLOCK(hcryp);
|
---|
3402 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3403 | /*Call registered error callback*/
|
---|
3404 | hcryp->ErrorCallback(hcryp);
|
---|
3405 | #else
|
---|
3406 | /*Call legacy weak error callback*/
|
---|
3407 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
3408 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3409 | }
|
---|
3410 |
|
---|
3411 | /* Clear CCF Flag */
|
---|
3412 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
3413 |
|
---|
3414 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
|
---|
3415 | for (i = 0U; i < 4U; i++)
|
---|
3416 | {
|
---|
3417 | temp[i] = hcryp->Instance->DOUTR;
|
---|
3418 | }
|
---|
3419 | i = 0U;
|
---|
3420 | while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
---|
3421 | {
|
---|
3422 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
3423 | hcryp->CrypOutCount++;
|
---|
3424 | i++;
|
---|
3425 | }
|
---|
3426 | #endif /* End AES or CRYP */
|
---|
3427 | }
|
---|
3428 |
|
---|
3429 | /**
|
---|
3430 | * @brief Handle CRYP block input/output data handling under interruption.
|
---|
3431 | * @note The function is called under interruption only, once
|
---|
3432 | * interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT.
|
---|
3433 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
3434 | * the configuration information for CRYP module.
|
---|
3435 | * @retval HAL status
|
---|
3436 | */
|
---|
3437 | static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp)
|
---|
3438 | {
|
---|
3439 | uint32_t temp[4]; /* Temporary CrypOutBuff */
|
---|
3440 | uint32_t i;
|
---|
3441 | #if defined (CRYP)
|
---|
3442 | uint16_t incount; /* Temporary CrypInCount Value */
|
---|
3443 | uint16_t outcount; /* Temporary CrypOutCount Value */
|
---|
3444 | #endif
|
---|
3445 |
|
---|
3446 | if (hcryp->State == HAL_CRYP_STATE_BUSY)
|
---|
3447 | {
|
---|
3448 | #if defined (CRYP)
|
---|
3449 |
|
---|
3450 | /*Temporary CrypOutCount Value*/
|
---|
3451 | incount = hcryp->CrypInCount;
|
---|
3452 | if (((hcryp->Instance->SR & CRYP_FLAG_IFNF) != 0x0U) && (incount < (hcryp->Size / 4U)))
|
---|
3453 | {
|
---|
3454 | /* Write the input block in the IN FIFO */
|
---|
3455 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3456 | hcryp->CrypInCount++;
|
---|
3457 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3458 | hcryp->CrypInCount++;
|
---|
3459 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3460 | hcryp->CrypInCount++;
|
---|
3461 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3462 | hcryp->CrypInCount++;
|
---|
3463 | if (hcryp->CrypInCount == ((uint16_t)(hcryp->Size) / 4U))
|
---|
3464 | {
|
---|
3465 | /* Disable interrupts */
|
---|
3466 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
---|
3467 |
|
---|
3468 | /* Call the input data transfer complete callback */
|
---|
3469 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3470 | /*Call registered Input complete callback*/
|
---|
3471 | hcryp->InCpltCallback(hcryp);
|
---|
3472 | #else
|
---|
3473 | /*Call legacy weak Input complete callback*/
|
---|
3474 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
3475 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3476 | }
|
---|
3477 | }
|
---|
3478 | /*Temporary CrypOutCount Value*/
|
---|
3479 | outcount = hcryp->CrypOutCount;
|
---|
3480 |
|
---|
3481 | if (((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U) && (outcount < (hcryp->Size / 4U)))
|
---|
3482 | {
|
---|
3483 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
|
---|
3484 | for (i = 0U; i < 4U; i++)
|
---|
3485 | {
|
---|
3486 | temp[i] = hcryp->Instance->DOUT;
|
---|
3487 | }
|
---|
3488 | i = 0U;
|
---|
3489 | while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 4U))
|
---|
3490 | {
|
---|
3491 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
3492 | hcryp->CrypOutCount++;
|
---|
3493 | i++;
|
---|
3494 | }
|
---|
3495 | if (hcryp->CrypOutCount == ((uint16_t)(hcryp->Size) / 4U))
|
---|
3496 | {
|
---|
3497 | /* Disable interrupts */
|
---|
3498 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
|
---|
3499 |
|
---|
3500 | /* Change the CRYP state */
|
---|
3501 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3502 |
|
---|
3503 | /* Disable CRYP */
|
---|
3504 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3505 |
|
---|
3506 | /* Process unlocked */
|
---|
3507 | __HAL_UNLOCK(hcryp);
|
---|
3508 |
|
---|
3509 | /* Call Output transfer complete callback */
|
---|
3510 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3511 | /*Call registered Output complete callback*/
|
---|
3512 | hcryp->OutCpltCallback(hcryp);
|
---|
3513 | #else
|
---|
3514 | /*Call legacy weak Output complete callback*/
|
---|
3515 | HAL_CRYP_OutCpltCallback(hcryp);
|
---|
3516 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3517 | }
|
---|
3518 | }
|
---|
3519 |
|
---|
3520 | #else /*AES*/
|
---|
3521 |
|
---|
3522 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
|
---|
3523 | for (i = 0U; i < 4U; i++)
|
---|
3524 | {
|
---|
3525 | temp[i] = hcryp->Instance->DOUTR;
|
---|
3526 | }
|
---|
3527 | i = 0U;
|
---|
3528 | while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
---|
3529 | {
|
---|
3530 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
3531 | hcryp->CrypOutCount++;
|
---|
3532 | i++;
|
---|
3533 | }
|
---|
3534 |
|
---|
3535 | if (hcryp->CrypOutCount == (hcryp->Size / 4U))
|
---|
3536 | {
|
---|
3537 | /* Disable Computation Complete flag and errors interrupts */
|
---|
3538 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
---|
3539 |
|
---|
3540 | /* Change the CRYP state */
|
---|
3541 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3542 |
|
---|
3543 | /* Disable CRYP */
|
---|
3544 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3545 |
|
---|
3546 | /* Process Unlocked */
|
---|
3547 | __HAL_UNLOCK(hcryp);
|
---|
3548 |
|
---|
3549 | /* Call Output transfer complete callback */
|
---|
3550 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3551 | /*Call registered Output complete callback*/
|
---|
3552 | hcryp->OutCpltCallback(hcryp);
|
---|
3553 | #else
|
---|
3554 | /*Call legacy weak Output complete callback*/
|
---|
3555 | HAL_CRYP_OutCpltCallback(hcryp);
|
---|
3556 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3557 | }
|
---|
3558 | else
|
---|
3559 | {
|
---|
3560 | /* Write the input block in the IN FIFO */
|
---|
3561 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3562 | hcryp->CrypInCount++;
|
---|
3563 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3564 | hcryp->CrypInCount++;
|
---|
3565 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3566 | hcryp->CrypInCount++;
|
---|
3567 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
3568 | hcryp->CrypInCount++;
|
---|
3569 |
|
---|
3570 | if (hcryp->CrypInCount == (hcryp->Size / 4U))
|
---|
3571 | {
|
---|
3572 | /* Call Input transfer complete callback */
|
---|
3573 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
---|
3574 | /*Call registered Input complete callback*/
|
---|
3575 | hcryp->InCpltCallback(hcryp);
|
---|
3576 | #else
|
---|
3577 | /*Call legacy weak Input complete callback*/
|
---|
3578 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
3579 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3580 | }
|
---|
3581 | }
|
---|
3582 | #endif /* End AES or CRYP */
|
---|
3583 |
|
---|
3584 | }
|
---|
3585 | else
|
---|
3586 | {
|
---|
3587 | /* Busy error code field */
|
---|
3588 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
---|
3589 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
3590 | /*Call registered error callback*/
|
---|
3591 | hcryp->ErrorCallback(hcryp);
|
---|
3592 | #else
|
---|
3593 | /*Call legacy weak error callback*/
|
---|
3594 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
3595 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
3596 | }
|
---|
3597 | }
|
---|
3598 |
|
---|
3599 | /**
|
---|
3600 | * @brief Writes Key in Key registers.
|
---|
3601 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
3602 | * the configuration information for CRYP module
|
---|
3603 | * @param KeySize: Size of Key
|
---|
3604 | * @retval None
|
---|
3605 | */
|
---|
3606 | static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize)
|
---|
3607 | {
|
---|
3608 | #if defined (CRYP)
|
---|
3609 |
|
---|
3610 | switch (KeySize)
|
---|
3611 | {
|
---|
3612 | case CRYP_KEYSIZE_256B:
|
---|
3613 | hcryp->Instance->K0LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
3614 | hcryp->Instance->K0RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
3615 | hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
3616 | hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
3617 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
3618 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
3619 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 6);
|
---|
3620 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 7);
|
---|
3621 | break;
|
---|
3622 | case CRYP_KEYSIZE_192B:
|
---|
3623 | hcryp->Instance->K1LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
3624 | hcryp->Instance->K1RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
3625 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
3626 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
3627 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
3628 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
3629 | break;
|
---|
3630 | case CRYP_KEYSIZE_128B:
|
---|
3631 | hcryp->Instance->K2LR = *(uint32_t *)(hcryp->Init.pKey);
|
---|
3632 | hcryp->Instance->K2RR = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
3633 | hcryp->Instance->K3LR = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
3634 | hcryp->Instance->K3RR = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
3635 |
|
---|
3636 | break;
|
---|
3637 | default:
|
---|
3638 | break;
|
---|
3639 | }
|
---|
3640 | #else /*AES*/
|
---|
3641 | switch (KeySize)
|
---|
3642 | {
|
---|
3643 | case CRYP_KEYSIZE_256B:
|
---|
3644 | hcryp->Instance->KEYR7 = *(uint32_t *)(hcryp->Init.pKey);
|
---|
3645 | hcryp->Instance->KEYR6 = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
3646 | hcryp->Instance->KEYR5 = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
3647 | hcryp->Instance->KEYR4 = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
3648 | hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey + 4);
|
---|
3649 | hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 5);
|
---|
3650 | hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 6);
|
---|
3651 | hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 7);
|
---|
3652 | break;
|
---|
3653 | case CRYP_KEYSIZE_128B:
|
---|
3654 | hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey);
|
---|
3655 | hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 1);
|
---|
3656 | hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 2);
|
---|
3657 | hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 3);
|
---|
3658 |
|
---|
3659 | break;
|
---|
3660 | default:
|
---|
3661 | break;
|
---|
3662 | }
|
---|
3663 | #endif /* End AES or CRYP */
|
---|
3664 | }
|
---|
3665 |
|
---|
3666 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)|| defined (AES)
|
---|
3667 | /**
|
---|
3668 | * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG
|
---|
3669 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
3670 | * the configuration information for CRYP module
|
---|
3671 | * @param Timeout: Timeout duration
|
---|
3672 | * @retval HAL status
|
---|
3673 | */
|
---|
3674 | static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
3675 | {
|
---|
3676 | uint32_t tickstart;
|
---|
3677 | uint32_t wordsize = (uint32_t)(hcryp->Size) / 4U ;
|
---|
3678 | uint16_t outcount; /* Temporary CrypOutCount Value */
|
---|
3679 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
3680 |
|
---|
3681 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
3682 | {
|
---|
3683 | if (hcryp->KeyIVConfig == 1U)
|
---|
3684 | {
|
---|
3685 | /* If the Key and IV configuration has to be done only once
|
---|
3686 | and if it has already been done, skip it */
|
---|
3687 | DoKeyIVConfig = 0U;
|
---|
3688 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
---|
3689 | }
|
---|
3690 | else
|
---|
3691 | {
|
---|
3692 | /* If the Key and IV configuration has to be done only once
|
---|
3693 | and if it has not been done already, do it and set KeyIVConfig
|
---|
3694 | to keep track it won't have to be done again next time */
|
---|
3695 | hcryp->KeyIVConfig = 1U;
|
---|
3696 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
---|
3697 | }
|
---|
3698 | }
|
---|
3699 | else
|
---|
3700 | {
|
---|
3701 | hcryp->SizesSum = hcryp->Size;
|
---|
3702 | }
|
---|
3703 |
|
---|
3704 | if (DoKeyIVConfig == 1U)
|
---|
3705 | {
|
---|
3706 | /* Reset CrypHeaderCount */
|
---|
3707 | hcryp->CrypHeaderCount = 0U;
|
---|
3708 |
|
---|
3709 | /****************************** Init phase **********************************/
|
---|
3710 |
|
---|
3711 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
---|
3712 |
|
---|
3713 | /* Set the key */
|
---|
3714 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
3715 |
|
---|
3716 | #if defined(CRYP)
|
---|
3717 |
|
---|
3718 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
---|
3719 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
3720 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
3721 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
3722 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
3723 |
|
---|
3724 | /* Enable the CRYP peripheral */
|
---|
3725 | __HAL_CRYP_ENABLE(hcryp);
|
---|
3726 |
|
---|
3727 | /* Get tick */
|
---|
3728 | tickstart = HAL_GetTick();
|
---|
3729 |
|
---|
3730 | /*Wait for the CRYPEN bit to be cleared*/
|
---|
3731 | while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
---|
3732 | {
|
---|
3733 | /* Check for the Timeout */
|
---|
3734 | if (Timeout != HAL_MAX_DELAY)
|
---|
3735 | {
|
---|
3736 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
3737 | {
|
---|
3738 | /* Disable the CRYP peripheral clock */
|
---|
3739 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3740 |
|
---|
3741 | /* Change state */
|
---|
3742 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
3743 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3744 |
|
---|
3745 | /* Process unlocked */
|
---|
3746 | __HAL_UNLOCK(hcryp);
|
---|
3747 | return HAL_ERROR;
|
---|
3748 | }
|
---|
3749 | }
|
---|
3750 | }
|
---|
3751 |
|
---|
3752 | #else /* AES */
|
---|
3753 | /* Workaround 1 : only AES.
|
---|
3754 | Datatype configuration must be 32 bits during Init phase. Only, after Init, and before re
|
---|
3755 | enabling the IP, datatype different from 32 bits can be configured.*/
|
---|
3756 | /* Select DATATYPE 32 */
|
---|
3757 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
|
---|
3758 |
|
---|
3759 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
---|
3760 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
3761 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
3762 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
3763 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
3764 |
|
---|
3765 | /* Enable the CRYP peripheral */
|
---|
3766 | __HAL_CRYP_ENABLE(hcryp);
|
---|
3767 |
|
---|
3768 | /* just wait for hash computation */
|
---|
3769 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
3770 | {
|
---|
3771 | /* Change state */
|
---|
3772 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
3773 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3774 |
|
---|
3775 | /* Process unlocked & return error */
|
---|
3776 | __HAL_UNLOCK(hcryp);
|
---|
3777 | return HAL_ERROR;
|
---|
3778 | }
|
---|
3779 | /* Clear CCF flag */
|
---|
3780 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
3781 |
|
---|
3782 | #endif /* End AES or CRYP */
|
---|
3783 |
|
---|
3784 | /************************ Header phase *************************************/
|
---|
3785 |
|
---|
3786 | if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
|
---|
3787 | {
|
---|
3788 | return HAL_ERROR;
|
---|
3789 | }
|
---|
3790 |
|
---|
3791 | /*************************Payload phase ************************************/
|
---|
3792 |
|
---|
3793 | /* Set the phase */
|
---|
3794 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
3795 |
|
---|
3796 | #if defined(CRYP)
|
---|
3797 |
|
---|
3798 | /* Disable the CRYP peripheral */
|
---|
3799 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3800 |
|
---|
3801 | /* Select payload phase once the header phase is performed */
|
---|
3802 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
---|
3803 |
|
---|
3804 | /* Enable the CRYP peripheral */
|
---|
3805 | __HAL_CRYP_ENABLE(hcryp);
|
---|
3806 |
|
---|
3807 | #else /* AES */
|
---|
3808 |
|
---|
3809 | /* Select payload phase once the header phase is performed */
|
---|
3810 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
---|
3811 |
|
---|
3812 | #endif /* End AES or CRYP */
|
---|
3813 | } /* if (DoKeyIVConfig == 1U) */
|
---|
3814 |
|
---|
3815 | if ((hcryp->Size % 16U) != 0U)
|
---|
3816 | {
|
---|
3817 | /* recalculate wordsize */
|
---|
3818 | wordsize = ((wordsize / 4U) * 4U) ;
|
---|
3819 | }
|
---|
3820 |
|
---|
3821 | /* Get tick */
|
---|
3822 | tickstart = HAL_GetTick();
|
---|
3823 | /*Temporary CrypOutCount Value*/
|
---|
3824 | outcount = hcryp->CrypOutCount;
|
---|
3825 |
|
---|
3826 | /* Write input data and get output Data */
|
---|
3827 | while ((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
|
---|
3828 | {
|
---|
3829 | /* Write plain data and get cipher data */
|
---|
3830 | CRYP_AES_ProcessData(hcryp, Timeout);
|
---|
3831 |
|
---|
3832 | /*Temporary CrypOutCount Value*/
|
---|
3833 | outcount = hcryp->CrypOutCount;
|
---|
3834 |
|
---|
3835 | /* Check for the Timeout */
|
---|
3836 | if (Timeout != HAL_MAX_DELAY)
|
---|
3837 | {
|
---|
3838 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
3839 | {
|
---|
3840 | /* Disable the CRYP peripheral clock */
|
---|
3841 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3842 |
|
---|
3843 | /* Change state & error code */
|
---|
3844 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
3845 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3846 |
|
---|
3847 | /* Process unlocked */
|
---|
3848 | __HAL_UNLOCK(hcryp);
|
---|
3849 | return HAL_ERROR;
|
---|
3850 | }
|
---|
3851 | }
|
---|
3852 | }
|
---|
3853 |
|
---|
3854 | if ((hcryp->Size % 16U) != 0U)
|
---|
3855 | {
|
---|
3856 | /* Workaround 2 : CRYP1 & AES generates correct TAG for GCM mode only when input block size is multiple of
|
---|
3857 | 128 bits. If lthe size of the last block of payload is inferior to 128 bits, when GCM encryption
|
---|
3858 | is selected, then the TAG message will be wrong.*/
|
---|
3859 | CRYP_Workaround(hcryp, Timeout);
|
---|
3860 | }
|
---|
3861 |
|
---|
3862 | /* Return function status */
|
---|
3863 | return HAL_OK;
|
---|
3864 | }
|
---|
3865 |
|
---|
3866 | /**
|
---|
3867 | * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode
|
---|
3868 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
3869 | * the configuration information for CRYP module
|
---|
3870 | * @retval HAL status
|
---|
3871 | */
|
---|
3872 | static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp)
|
---|
3873 | {
|
---|
3874 | __IO uint32_t count = 0U;
|
---|
3875 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
3876 | #if defined(AES)
|
---|
3877 | uint32_t loopcounter;
|
---|
3878 | uint32_t lastwordsize;
|
---|
3879 | uint32_t npblb;
|
---|
3880 | #endif /* AES */
|
---|
3881 |
|
---|
3882 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
3883 | {
|
---|
3884 | if (hcryp->KeyIVConfig == 1U)
|
---|
3885 | {
|
---|
3886 | /* If the Key and IV configuration has to be done only once
|
---|
3887 | and if it has already been done, skip it */
|
---|
3888 | DoKeyIVConfig = 0U;
|
---|
3889 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
---|
3890 | }
|
---|
3891 | else
|
---|
3892 | {
|
---|
3893 | /* If the Key and IV configuration has to be done only once
|
---|
3894 | and if it has not been done already, do it and set KeyIVConfig
|
---|
3895 | to keep track it won't have to be done again next time */
|
---|
3896 | hcryp->KeyIVConfig = 1U;
|
---|
3897 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
---|
3898 | }
|
---|
3899 | }
|
---|
3900 | else
|
---|
3901 | {
|
---|
3902 | hcryp->SizesSum = hcryp->Size;
|
---|
3903 | }
|
---|
3904 |
|
---|
3905 | /* Configure Key, IV and process message (header and payload) */
|
---|
3906 | if (DoKeyIVConfig == 1U)
|
---|
3907 | {
|
---|
3908 | /* Reset CrypHeaderCount */
|
---|
3909 | hcryp->CrypHeaderCount = 0U;
|
---|
3910 |
|
---|
3911 | /******************************* Init phase *********************************/
|
---|
3912 |
|
---|
3913 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
---|
3914 |
|
---|
3915 | /* Set the key */
|
---|
3916 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
3917 |
|
---|
3918 | #if defined(CRYP)
|
---|
3919 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
---|
3920 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
3921 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
3922 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
3923 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
3924 |
|
---|
3925 | /* Enable the CRYP peripheral */
|
---|
3926 | __HAL_CRYP_ENABLE(hcryp);
|
---|
3927 |
|
---|
3928 | /*Wait for the CRYPEN bit to be cleared*/
|
---|
3929 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
3930 | do
|
---|
3931 | {
|
---|
3932 | count-- ;
|
---|
3933 | if (count == 0U)
|
---|
3934 | {
|
---|
3935 | /* Disable the CRYP peripheral clock */
|
---|
3936 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3937 |
|
---|
3938 | /* Change state */
|
---|
3939 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
3940 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3941 |
|
---|
3942 | /* Process unlocked */
|
---|
3943 | __HAL_UNLOCK(hcryp);
|
---|
3944 | return HAL_ERROR;
|
---|
3945 | }
|
---|
3946 | } while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
|
---|
3947 |
|
---|
3948 | #else /* AES */
|
---|
3949 |
|
---|
3950 | /* Workaround 1 : only AES
|
---|
3951 | Datatype configuration must be 32 bits during INIT phase. Only, after INIT, and before re
|
---|
3952 | enabling the IP, datatype different from 32 bits can be configured.*/
|
---|
3953 | /* Select DATATYPE 32 */
|
---|
3954 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
|
---|
3955 |
|
---|
3956 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
---|
3957 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
3958 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
3959 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
3960 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
3961 |
|
---|
3962 | /* Enable the CRYP peripheral */
|
---|
3963 | __HAL_CRYP_ENABLE(hcryp);
|
---|
3964 |
|
---|
3965 | /* just wait for hash computation */
|
---|
3966 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
3967 | do
|
---|
3968 | {
|
---|
3969 | count-- ;
|
---|
3970 | if (count == 0U)
|
---|
3971 | {
|
---|
3972 | /* Disable the CRYP peripheral clock */
|
---|
3973 | __HAL_CRYP_DISABLE(hcryp);
|
---|
3974 |
|
---|
3975 | /* Change state */
|
---|
3976 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
3977 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
3978 |
|
---|
3979 | /* Process unlocked */
|
---|
3980 | __HAL_UNLOCK(hcryp);
|
---|
3981 | return HAL_ERROR;
|
---|
3982 | }
|
---|
3983 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
3984 |
|
---|
3985 | /* Clear CCF flag */
|
---|
3986 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
3987 |
|
---|
3988 | #endif /* End AES or CRYP */
|
---|
3989 |
|
---|
3990 | /***************************** Header phase *********************************/
|
---|
3991 |
|
---|
3992 | #if defined(CRYP)
|
---|
3993 |
|
---|
3994 | /* Select header phase */
|
---|
3995 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
3996 |
|
---|
3997 | /* Enable interrupts */
|
---|
3998 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI);
|
---|
3999 |
|
---|
4000 | /* Enable CRYP */
|
---|
4001 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4002 |
|
---|
4003 | #else /* AES */
|
---|
4004 |
|
---|
4005 | /* Workaround 1: only AES , before re-enabling the IP, datatype can be configured*/
|
---|
4006 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
---|
4007 |
|
---|
4008 | /* Select header phase */
|
---|
4009 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
4010 |
|
---|
4011 | /* Enable computation complete flag and error interrupts */
|
---|
4012 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
---|
4013 |
|
---|
4014 | /* Enable the CRYP peripheral */
|
---|
4015 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4016 |
|
---|
4017 | if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/
|
---|
4018 | {
|
---|
4019 | /* Set the phase */
|
---|
4020 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
4021 |
|
---|
4022 | /* Select payload phase once the header phase is performed */
|
---|
4023 | MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
|
---|
4024 |
|
---|
4025 | /* Write the payload Input block in the IN FIFO */
|
---|
4026 | if (hcryp->Size == 0U)
|
---|
4027 | {
|
---|
4028 | /* Disable interrupts */
|
---|
4029 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
---|
4030 |
|
---|
4031 | /* Change the CRYP state */
|
---|
4032 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4033 |
|
---|
4034 | /* Process unlocked */
|
---|
4035 | __HAL_UNLOCK(hcryp);
|
---|
4036 | }
|
---|
4037 | else if (hcryp->Size >= 16U)
|
---|
4038 | {
|
---|
4039 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
4040 | hcryp->CrypInCount++;
|
---|
4041 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
4042 | hcryp->CrypInCount++;
|
---|
4043 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
4044 | hcryp->CrypInCount++;
|
---|
4045 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
4046 | hcryp->CrypInCount++;
|
---|
4047 | if (hcryp->CrypInCount == (hcryp->Size / 4U))
|
---|
4048 | {
|
---|
4049 | /* Call Input transfer complete callback */
|
---|
4050 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
4051 | /*Call registered Input complete callback*/
|
---|
4052 | hcryp->InCpltCallback(hcryp);
|
---|
4053 | #else
|
---|
4054 | /*Call legacy weak Input complete callback*/
|
---|
4055 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
4056 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
4057 | }
|
---|
4058 | }
|
---|
4059 | else /* Size < 16Bytes : first block is the last block*/
|
---|
4060 | {
|
---|
4061 | /* Workaround not implemented*/
|
---|
4062 | /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
|
---|
4063 | Workaround is implemented in polling mode, so if last block of
|
---|
4064 | payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
|
---|
4065 |
|
---|
4066 | /* Compute the number of padding bytes in last block of payload */
|
---|
4067 | npblb = 16U - (uint32_t)(hcryp->Size);
|
---|
4068 |
|
---|
4069 | /* Number of valid words (lastwordsize) in last block */
|
---|
4070 | if ((npblb % 4U) == 0U)
|
---|
4071 | {
|
---|
4072 | lastwordsize = (16U - npblb) / 4U;
|
---|
4073 | }
|
---|
4074 | else
|
---|
4075 | {
|
---|
4076 | lastwordsize = ((16U - npblb) / 4U) + 1U;
|
---|
4077 | }
|
---|
4078 |
|
---|
4079 | /* last block optionally pad the data with zeros*/
|
---|
4080 | for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
|
---|
4081 | {
|
---|
4082 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
4083 | hcryp->CrypInCount++;
|
---|
4084 | }
|
---|
4085 | while (loopcounter < 4U)
|
---|
4086 | {
|
---|
4087 | /* pad the data with zeros to have a complete block */
|
---|
4088 | hcryp->Instance->DINR = 0x0U;
|
---|
4089 | loopcounter++;
|
---|
4090 | }
|
---|
4091 | }
|
---|
4092 | }
|
---|
4093 | else if ((hcryp->Init.HeaderSize) < 4U)
|
---|
4094 | {
|
---|
4095 | for (loopcounter = 0U; loopcounter < hcryp->Init.HeaderSize ; loopcounter++)
|
---|
4096 | {
|
---|
4097 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4098 | hcryp->CrypHeaderCount++ ;
|
---|
4099 | }
|
---|
4100 | while (loopcounter < 4U)
|
---|
4101 | {
|
---|
4102 | /* pad the data with zeros to have a complete block */
|
---|
4103 | hcryp->Instance->DINR = 0x0U;
|
---|
4104 | loopcounter++;
|
---|
4105 | }
|
---|
4106 | /* Set the phase */
|
---|
4107 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
4108 |
|
---|
4109 | /* Select payload phase once the header phase is performed */
|
---|
4110 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
---|
4111 |
|
---|
4112 | /* Call Input transfer complete callback */
|
---|
4113 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
4114 | /*Call registered Input complete callback*/
|
---|
4115 | hcryp->InCpltCallback(hcryp);
|
---|
4116 | #else
|
---|
4117 | /*Call legacy weak Input complete callback*/
|
---|
4118 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
4119 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
4120 | }
|
---|
4121 | else if ((hcryp->Init.HeaderSize) >= 4U)
|
---|
4122 | {
|
---|
4123 | /* Write the input block in the IN FIFO */
|
---|
4124 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4125 | hcryp->CrypHeaderCount++;
|
---|
4126 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4127 | hcryp->CrypHeaderCount++;
|
---|
4128 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4129 | hcryp->CrypHeaderCount++;
|
---|
4130 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4131 | hcryp->CrypHeaderCount++;
|
---|
4132 | }
|
---|
4133 | else
|
---|
4134 | {
|
---|
4135 | /* Nothing to do */
|
---|
4136 | }
|
---|
4137 |
|
---|
4138 | #endif /* End AES or CRYP */
|
---|
4139 | } /* end of if (DoKeyIVConfig == 1U) */
|
---|
4140 |
|
---|
4141 | /* Return function status */
|
---|
4142 | return HAL_OK;
|
---|
4143 | }
|
---|
4144 |
|
---|
4145 |
|
---|
4146 | /**
|
---|
4147 | * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA
|
---|
4148 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
4149 | * the configuration information for CRYP module
|
---|
4150 | * @retval HAL status
|
---|
4151 | */
|
---|
4152 | static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
|
---|
4153 | {
|
---|
4154 | __IO uint32_t count = 0U;
|
---|
4155 | uint32_t wordsize;
|
---|
4156 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
4157 |
|
---|
4158 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
4159 | {
|
---|
4160 | if (hcryp->KeyIVConfig == 1U)
|
---|
4161 | {
|
---|
4162 | /* If the Key and IV configuration has to be done only once
|
---|
4163 | and if it has already been done, skip it */
|
---|
4164 | DoKeyIVConfig = 0U;
|
---|
4165 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
---|
4166 | }
|
---|
4167 | else
|
---|
4168 | {
|
---|
4169 | /* If the Key and IV configuration has to be done only once
|
---|
4170 | and if it has not been done already, do it and set KeyIVConfig
|
---|
4171 | to keep track it won't have to be done again next time */
|
---|
4172 | hcryp->KeyIVConfig = 1U;
|
---|
4173 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
---|
4174 | }
|
---|
4175 | }
|
---|
4176 | else
|
---|
4177 | {
|
---|
4178 | hcryp->SizesSum = hcryp->Size;
|
---|
4179 | }
|
---|
4180 |
|
---|
4181 | if (DoKeyIVConfig == 1U)
|
---|
4182 | {
|
---|
4183 | /* Reset CrypHeaderCount */
|
---|
4184 | hcryp->CrypHeaderCount = 0U;
|
---|
4185 |
|
---|
4186 | /*************************** Init phase ************************************/
|
---|
4187 |
|
---|
4188 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
---|
4189 |
|
---|
4190 | /* Set the key */
|
---|
4191 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
4192 |
|
---|
4193 | #if defined(CRYP)
|
---|
4194 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
---|
4195 | hcryp->Instance->IV0LR = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
4196 | hcryp->Instance->IV0RR = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
4197 | hcryp->Instance->IV1LR = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
4198 | hcryp->Instance->IV1RR = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
4199 |
|
---|
4200 | /* Enable the CRYP peripheral */
|
---|
4201 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4202 |
|
---|
4203 | /*Wait for the CRYPEN bit to be cleared*/
|
---|
4204 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
4205 | do
|
---|
4206 | {
|
---|
4207 | count-- ;
|
---|
4208 | if (count == 0U)
|
---|
4209 | {
|
---|
4210 | /* Disable the CRYP peripheral clock */
|
---|
4211 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4212 |
|
---|
4213 | /* Change state */
|
---|
4214 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4215 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4216 |
|
---|
4217 | /* Process unlocked */
|
---|
4218 | __HAL_UNLOCK(hcryp);
|
---|
4219 | return HAL_ERROR;
|
---|
4220 | }
|
---|
4221 | } while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
|
---|
4222 |
|
---|
4223 | #else /* AES */
|
---|
4224 |
|
---|
4225 | /*Workaround 1 : only AES
|
---|
4226 | Datatype configuration must be 32 bits during Init phase. Only, after Init, and before re
|
---|
4227 | enabling the IP, datatype different from 32 bits can be configured.*/
|
---|
4228 | /* Select DATATYPE 32 */
|
---|
4229 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, CRYP_DATATYPE_32B);
|
---|
4230 |
|
---|
4231 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
---|
4232 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
---|
4233 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1);
|
---|
4234 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2);
|
---|
4235 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3);
|
---|
4236 |
|
---|
4237 | /* Enable the CRYP peripheral */
|
---|
4238 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4239 |
|
---|
4240 | /* just wait for hash computation */
|
---|
4241 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
4242 | do
|
---|
4243 | {
|
---|
4244 | count-- ;
|
---|
4245 | if (count == 0U)
|
---|
4246 | {
|
---|
4247 | /* Disable the CRYP peripheral clock */
|
---|
4248 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4249 |
|
---|
4250 | /* Change state */
|
---|
4251 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4252 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4253 |
|
---|
4254 | /* Process unlocked */
|
---|
4255 | __HAL_UNLOCK(hcryp);
|
---|
4256 | return HAL_ERROR;
|
---|
4257 | }
|
---|
4258 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
4259 |
|
---|
4260 | /* Clear CCF flag */
|
---|
4261 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
4262 |
|
---|
4263 | #endif /* End AES or CRYP */
|
---|
4264 |
|
---|
4265 | /************************ Header phase *************************************/
|
---|
4266 |
|
---|
4267 | if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
|
---|
4268 | {
|
---|
4269 | return HAL_ERROR;
|
---|
4270 | }
|
---|
4271 |
|
---|
4272 | /************************ Payload phase ************************************/
|
---|
4273 |
|
---|
4274 | /* Set the phase */
|
---|
4275 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
4276 |
|
---|
4277 | #if defined(CRYP)
|
---|
4278 |
|
---|
4279 | /* Disable the CRYP peripheral */
|
---|
4280 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4281 |
|
---|
4282 | #endif /* CRYP */
|
---|
4283 |
|
---|
4284 | /* Select payload phase once the header phase is performed */
|
---|
4285 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
---|
4286 |
|
---|
4287 | } /* if (DoKeyIVConfig == 1U) */
|
---|
4288 |
|
---|
4289 | if (hcryp->Size != 0U)
|
---|
4290 | {
|
---|
4291 | /* CRYP1 IP V < 2.2.1 Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
|
---|
4292 | Workaround is implemented in polling mode, so if last block of
|
---|
4293 | payload <128bit don't use DMA mode otherwise TAG is incorrectly generated . */
|
---|
4294 | /* Set the input and output addresses and start DMA transfer */
|
---|
4295 | if ((hcryp->Size % 16U) == 0U)
|
---|
4296 | {
|
---|
4297 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
4298 | }
|
---|
4299 | else /*to compute last word<128bits, otherwise it will not be encrypted/decrypted */
|
---|
4300 | {
|
---|
4301 | wordsize = (uint32_t)(hcryp->Size) + (16U - ((uint32_t)(hcryp->Size) % 16U)) ;
|
---|
4302 |
|
---|
4303 | /* Set the input and output addresses and start DMA transfer, pCrypOutBuffPtr size should be %4 */
|
---|
4304 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)wordsize / 4U),
|
---|
4305 | (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
4306 | }
|
---|
4307 | }
|
---|
4308 | else
|
---|
4309 | {
|
---|
4310 | /* Process unLocked */
|
---|
4311 | __HAL_UNLOCK(hcryp);
|
---|
4312 |
|
---|
4313 | /* Change the CRYP state and phase */
|
---|
4314 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4315 | }
|
---|
4316 |
|
---|
4317 | /* Return function status */
|
---|
4318 | return HAL_OK;
|
---|
4319 | }
|
---|
4320 |
|
---|
4321 |
|
---|
4322 | /**
|
---|
4323 | * @brief AES CCM encryption/decryption processing in polling mode
|
---|
4324 | * for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
|
---|
4325 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
4326 | * the configuration information for CRYP module
|
---|
4327 | * @param Timeout: Timeout duration
|
---|
4328 | * @retval HAL status
|
---|
4329 | */
|
---|
4330 | static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
4331 | {
|
---|
4332 | uint32_t tickstart;
|
---|
4333 | uint32_t wordsize = (uint32_t)(hcryp->Size) / 4U;
|
---|
4334 | uint16_t outcount; /* Temporary CrypOutCount Value */
|
---|
4335 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
4336 | #if defined(AES)
|
---|
4337 | uint32_t loopcounter;
|
---|
4338 | uint32_t npblb;
|
---|
4339 | uint32_t lastwordsize;
|
---|
4340 | #endif /* AES */
|
---|
4341 |
|
---|
4342 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
4343 | {
|
---|
4344 | if (hcryp->KeyIVConfig == 1U)
|
---|
4345 | {
|
---|
4346 | /* If the Key and IV configuration has to be done only once
|
---|
4347 | and if it has already been done, skip it */
|
---|
4348 | DoKeyIVConfig = 0U;
|
---|
4349 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
---|
4350 | }
|
---|
4351 | else
|
---|
4352 | {
|
---|
4353 | /* If the Key and IV configuration has to be done only once
|
---|
4354 | and if it has not been done already, do it and set KeyIVConfig
|
---|
4355 | to keep track it won't have to be done again next time */
|
---|
4356 | hcryp->KeyIVConfig = 1U;
|
---|
4357 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
---|
4358 | }
|
---|
4359 | }
|
---|
4360 | else
|
---|
4361 | {
|
---|
4362 | hcryp->SizesSum = hcryp->Size;
|
---|
4363 | }
|
---|
4364 |
|
---|
4365 | if (DoKeyIVConfig == 1U)
|
---|
4366 | {
|
---|
4367 |
|
---|
4368 | /* Reset CrypHeaderCount */
|
---|
4369 | hcryp->CrypHeaderCount = 0U;
|
---|
4370 |
|
---|
4371 | #if defined(CRYP)
|
---|
4372 |
|
---|
4373 | /********************** Init phase ******************************************/
|
---|
4374 |
|
---|
4375 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
---|
4376 |
|
---|
4377 | /* Set the key */
|
---|
4378 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
4379 |
|
---|
4380 | /* Set the initialization vector (IV) with CTR1 information */
|
---|
4381 | hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
|
---|
4382 | hcryp->Instance->IV0RR = hcryp->Init.B0[1];
|
---|
4383 | hcryp->Instance->IV1LR = hcryp->Init.B0[2];
|
---|
4384 | hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1) | CRYP_CCM_CTR1_2;
|
---|
4385 |
|
---|
4386 |
|
---|
4387 | /* Enable the CRYP peripheral */
|
---|
4388 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4389 |
|
---|
4390 | /*Write B0 packet into CRYP_DIN Register*/
|
---|
4391 | if (hcryp->Init.DataType == CRYP_DATATYPE_8B)
|
---|
4392 | {
|
---|
4393 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0));
|
---|
4394 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 1));
|
---|
4395 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 2));
|
---|
4396 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 3));
|
---|
4397 | }
|
---|
4398 | else if (hcryp->Init.DataType == CRYP_DATATYPE_16B)
|
---|
4399 | {
|
---|
4400 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0), 16);
|
---|
4401 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 1), 16);
|
---|
4402 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 2), 16);
|
---|
4403 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 3), 16);
|
---|
4404 | }
|
---|
4405 | else if (hcryp->Init.DataType == CRYP_DATATYPE_1B)
|
---|
4406 | {
|
---|
4407 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0));
|
---|
4408 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 1));
|
---|
4409 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 2));
|
---|
4410 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 3));
|
---|
4411 | }
|
---|
4412 | else
|
---|
4413 | {
|
---|
4414 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0);
|
---|
4415 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 1);
|
---|
4416 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 2);
|
---|
4417 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 3);
|
---|
4418 | }
|
---|
4419 | /* Get tick */
|
---|
4420 | tickstart = HAL_GetTick();
|
---|
4421 |
|
---|
4422 | /*Wait for the CRYPEN bit to be cleared*/
|
---|
4423 | while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
---|
4424 | {
|
---|
4425 | /* Check for the Timeout */
|
---|
4426 | if (Timeout != HAL_MAX_DELAY)
|
---|
4427 | {
|
---|
4428 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
4429 | {
|
---|
4430 | /* Disable the CRYP peripheral clock */
|
---|
4431 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4432 |
|
---|
4433 | /* Change state */
|
---|
4434 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4435 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4436 |
|
---|
4437 | /* Process unlocked */
|
---|
4438 | __HAL_UNLOCK(hcryp);
|
---|
4439 | return HAL_ERROR;
|
---|
4440 | }
|
---|
4441 | }
|
---|
4442 | }
|
---|
4443 | #else /* AES */
|
---|
4444 | /*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
|
---|
4445 | /* Select header phase */
|
---|
4446 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
4447 |
|
---|
4448 | /* configured encryption mode */
|
---|
4449 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
4450 |
|
---|
4451 | /* Set the key */
|
---|
4452 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
4453 |
|
---|
4454 | /* Set the initialization vector with zero values*/
|
---|
4455 | hcryp->Instance->IVR3 = 0U;
|
---|
4456 | hcryp->Instance->IVR2 = 0U;
|
---|
4457 | hcryp->Instance->IVR1 = 0U;
|
---|
4458 | hcryp->Instance->IVR0 = 0U;
|
---|
4459 |
|
---|
4460 | /* Enable the CRYP peripheral */
|
---|
4461 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4462 |
|
---|
4463 | /*Write the B0 packet into CRYP_DIN*/
|
---|
4464 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0);
|
---|
4465 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 1);
|
---|
4466 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 2);
|
---|
4467 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 3);
|
---|
4468 |
|
---|
4469 | /* wait until the end of computation */
|
---|
4470 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
4471 | {
|
---|
4472 | /* Change state */
|
---|
4473 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4474 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4475 |
|
---|
4476 | /* Process unlocked & return error */
|
---|
4477 | __HAL_UNLOCK(hcryp);
|
---|
4478 | return HAL_ERROR;
|
---|
4479 | }
|
---|
4480 | /* Clear CCF flag */
|
---|
4481 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
4482 |
|
---|
4483 | /* Set the phase */
|
---|
4484 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
4485 |
|
---|
4486 | /* From that point the whole message must be processed, first the Header then the payload.
|
---|
4487 | First the Header block(B1) : associated data length expressed in bytes concatenated with Associated Data (A)*/
|
---|
4488 |
|
---|
4489 | if (hcryp->Init.HeaderSize != 0U)
|
---|
4490 | {
|
---|
4491 | if ((hcryp->Init.HeaderSize % 4U) == 0U)
|
---|
4492 | {
|
---|
4493 | /* HeaderSize %4, no padding */
|
---|
4494 | for (loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter += 4U)
|
---|
4495 | {
|
---|
4496 | /* Write the Input block in the Data Input register */
|
---|
4497 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4498 | hcryp->CrypHeaderCount++ ;
|
---|
4499 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4500 | hcryp->CrypHeaderCount++ ;
|
---|
4501 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4502 | hcryp->CrypHeaderCount++ ;
|
---|
4503 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4504 | hcryp->CrypHeaderCount++ ;
|
---|
4505 |
|
---|
4506 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
4507 | {
|
---|
4508 | /* Disable the CRYP peripheral clock */
|
---|
4509 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4510 |
|
---|
4511 | /* Change state */
|
---|
4512 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4513 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4514 |
|
---|
4515 | /* Process unlocked */
|
---|
4516 | __HAL_UNLOCK(hcryp);
|
---|
4517 | return HAL_ERROR;
|
---|
4518 | }
|
---|
4519 | /* Clear CCF Flag */
|
---|
4520 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
4521 | }
|
---|
4522 | }
|
---|
4523 | else
|
---|
4524 | {
|
---|
4525 | /*Write Header block in the IN FIFO without last block */
|
---|
4526 | for (loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize) - (hcryp->Init.HeaderSize % 4U))); loopcounter += 4U)
|
---|
4527 | {
|
---|
4528 | /* Write the input block in the data input register */
|
---|
4529 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4530 | hcryp->CrypHeaderCount++ ;
|
---|
4531 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4532 | hcryp->CrypHeaderCount++ ;
|
---|
4533 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4534 | hcryp->CrypHeaderCount++ ;
|
---|
4535 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4536 | hcryp->CrypHeaderCount++ ;
|
---|
4537 |
|
---|
4538 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
4539 | {
|
---|
4540 | /* Disable the CRYP peripheral clock */
|
---|
4541 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4542 |
|
---|
4543 | /* Change state */
|
---|
4544 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4545 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4546 |
|
---|
4547 | /* Process unlocked */
|
---|
4548 | __HAL_UNLOCK(hcryp);
|
---|
4549 | return HAL_ERROR;
|
---|
4550 | }
|
---|
4551 | /* Clear CCF Flag */
|
---|
4552 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
4553 | }
|
---|
4554 | /* Last block optionally pad the data with zeros*/
|
---|
4555 | for (loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize % 4U)); loopcounter++)
|
---|
4556 | {
|
---|
4557 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
4558 | hcryp->CrypHeaderCount++ ;
|
---|
4559 | }
|
---|
4560 | while (loopcounter < 4U)
|
---|
4561 | {
|
---|
4562 | /* Pad the data with zeros to have a complete block */
|
---|
4563 | hcryp->Instance->DINR = 0x0U;
|
---|
4564 | loopcounter++;
|
---|
4565 | }
|
---|
4566 |
|
---|
4567 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
4568 | {
|
---|
4569 | /* Disable the CRYP peripheral clock */
|
---|
4570 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4571 |
|
---|
4572 | /* Change state */
|
---|
4573 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4574 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4575 |
|
---|
4576 | /* Process unlocked */
|
---|
4577 | __HAL_UNLOCK(hcryp);
|
---|
4578 | return HAL_ERROR;
|
---|
4579 | }
|
---|
4580 | /* Clear CCF flag */
|
---|
4581 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
4582 | }
|
---|
4583 | }
|
---|
4584 | } /* if (DoKeyIVConfig == 1U) */
|
---|
4585 | /* Then the payload: cleartext payload (not the ciphertext payload).
|
---|
4586 | Write input Data, no output Data to get */
|
---|
4587 | if (hcryp->Size != 0U)
|
---|
4588 | {
|
---|
4589 | if ((hcryp->Size % 16U) != 0U)
|
---|
4590 | {
|
---|
4591 | /* recalculate wordsize */
|
---|
4592 | wordsize = ((wordsize / 4U) * 4U) ;
|
---|
4593 | }
|
---|
4594 |
|
---|
4595 | /* Get tick */
|
---|
4596 | tickstart = HAL_GetTick();
|
---|
4597 | /*Temporary CrypOutCount Value*/
|
---|
4598 | outcount = hcryp->CrypOutCount;
|
---|
4599 |
|
---|
4600 | while ((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
|
---|
4601 | {
|
---|
4602 | /* Write plain data and get cipher data */
|
---|
4603 | CRYP_AES_ProcessData(hcryp, Timeout);
|
---|
4604 |
|
---|
4605 | /*Temporary CrypOutCount Value*/
|
---|
4606 | outcount = hcryp->CrypOutCount;
|
---|
4607 |
|
---|
4608 | /* Check for the Timeout */
|
---|
4609 | if (Timeout != HAL_MAX_DELAY)
|
---|
4610 | {
|
---|
4611 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
4612 | {
|
---|
4613 | /* Disable the CRYP peripheral clock */
|
---|
4614 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4615 |
|
---|
4616 | /* Change state */
|
---|
4617 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4618 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4619 |
|
---|
4620 | /* Process unlocked */
|
---|
4621 | __HAL_UNLOCK(hcryp);
|
---|
4622 | return HAL_ERROR;
|
---|
4623 | }
|
---|
4624 | }
|
---|
4625 | }
|
---|
4626 |
|
---|
4627 | if ((hcryp->Size % 16U) != 0U)
|
---|
4628 | {
|
---|
4629 | /* Compute the number of padding bytes in last block of payload */
|
---|
4630 | npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
---|
4631 |
|
---|
4632 | /* Number of valid words (lastwordsize) in last block */
|
---|
4633 | if ((npblb % 4U) == 0U)
|
---|
4634 | {
|
---|
4635 | lastwordsize = (16U - npblb) / 4U;
|
---|
4636 | }
|
---|
4637 | else
|
---|
4638 | {
|
---|
4639 | lastwordsize = ((16U - npblb) / 4U) + 1U;
|
---|
4640 | }
|
---|
4641 | /* Last block optionally pad the data with zeros*/
|
---|
4642 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++)
|
---|
4643 | {
|
---|
4644 | /* Write the last input block in the IN FIFO */
|
---|
4645 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
4646 | hcryp->CrypInCount++;
|
---|
4647 | }
|
---|
4648 | while (loopcounter < 4U)
|
---|
4649 | {
|
---|
4650 | /* Pad the data with zeros to have a complete block */
|
---|
4651 | hcryp->Instance->DINR = 0U;
|
---|
4652 | loopcounter++;
|
---|
4653 | }
|
---|
4654 | /* Wait for CCF flag to be raised */
|
---|
4655 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
4656 | {
|
---|
4657 | /* Disable the CRYP peripheral clock */
|
---|
4658 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4659 |
|
---|
4660 | /* Change state */
|
---|
4661 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4662 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4663 |
|
---|
4664 | /* Process unlocked */
|
---|
4665 | __HAL_UNLOCK(hcryp);
|
---|
4666 | return HAL_ERROR;
|
---|
4667 | }
|
---|
4668 | /* Clear CCF flag */
|
---|
4669 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
4670 |
|
---|
4671 | }
|
---|
4672 | }
|
---|
4673 | #endif /* End AES or CRYP */
|
---|
4674 |
|
---|
4675 | #if defined(CRYP)
|
---|
4676 |
|
---|
4677 | /************************* Header phase *************************************/
|
---|
4678 | /* Header block(B1) : associated data length expressed in bytes concatenated
|
---|
4679 | with Associated Data (A)*/
|
---|
4680 |
|
---|
4681 | if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
|
---|
4682 | {
|
---|
4683 | return HAL_ERROR;
|
---|
4684 | }
|
---|
4685 |
|
---|
4686 | /********************** Payload phase ***************************************/
|
---|
4687 |
|
---|
4688 | /* Set the phase */
|
---|
4689 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
4690 |
|
---|
4691 | /* Disable the CRYP peripheral */
|
---|
4692 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4693 |
|
---|
4694 | /* Select payload phase once the header phase is performed */
|
---|
4695 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
---|
4696 |
|
---|
4697 | /* Enable the CRYP peripheral */
|
---|
4698 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4699 |
|
---|
4700 | } /* if (DoKeyIVConfig == 1U) */
|
---|
4701 |
|
---|
4702 | if ((hcryp->Size % 16U) != 0U)
|
---|
4703 | {
|
---|
4704 | /* recalculate wordsize */
|
---|
4705 | wordsize = ((wordsize / 4U) * 4U) ;
|
---|
4706 | }
|
---|
4707 | /* Get tick */
|
---|
4708 | tickstart = HAL_GetTick();
|
---|
4709 | /*Temporary CrypOutCount Value*/
|
---|
4710 | outcount = hcryp->CrypOutCount;
|
---|
4711 |
|
---|
4712 | /* Write input data and get output data */
|
---|
4713 | while ((hcryp->CrypInCount < wordsize) && (outcount < wordsize))
|
---|
4714 | {
|
---|
4715 | /* Write plain data and get cipher data */
|
---|
4716 | CRYP_AES_ProcessData(hcryp, Timeout);
|
---|
4717 |
|
---|
4718 | /* Check for the Timeout */
|
---|
4719 | if (Timeout != HAL_MAX_DELAY)
|
---|
4720 | {
|
---|
4721 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
4722 | {
|
---|
4723 | /* Disable the CRYP peripheral clock */
|
---|
4724 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4725 |
|
---|
4726 | /* Change state */
|
---|
4727 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4728 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4729 |
|
---|
4730 | /* Process unlocked */
|
---|
4731 | __HAL_UNLOCK(hcryp);
|
---|
4732 | return HAL_ERROR;
|
---|
4733 | }
|
---|
4734 | }
|
---|
4735 | }
|
---|
4736 |
|
---|
4737 | if ((hcryp->Size % 16U) != 0U)
|
---|
4738 | {
|
---|
4739 | /* CRYP Workaround : CRYP1 generates correct TAG during CCM decryption only when ciphertext blocks size is multiple of
|
---|
4740 | 128 bits. If lthe size of the last block of payload is inferior to 128 bits, when CCM decryption
|
---|
4741 | is selected, then the TAG message will be wrong.*/
|
---|
4742 | CRYP_Workaround(hcryp, Timeout);
|
---|
4743 | }
|
---|
4744 | #endif /* CRYP */
|
---|
4745 |
|
---|
4746 | /* Return function status */
|
---|
4747 | return HAL_OK;
|
---|
4748 | }
|
---|
4749 |
|
---|
4750 | /**
|
---|
4751 | * @brief AES CCM encryption/decryption process in interrupt mode
|
---|
4752 | * for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
|
---|
4753 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
4754 | * the configuration information for CRYP module
|
---|
4755 | * @retval HAL status
|
---|
4756 | */
|
---|
4757 | static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp)
|
---|
4758 | {
|
---|
4759 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
4760 | #if defined(CRYP)
|
---|
4761 | __IO uint32_t count = 0U;
|
---|
4762 | #endif /* CRYP */
|
---|
4763 |
|
---|
4764 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
4765 | {
|
---|
4766 | if (hcryp->KeyIVConfig == 1U)
|
---|
4767 | {
|
---|
4768 | /* If the Key and IV configuration has to be done only once
|
---|
4769 | and if it has already been done, skip it */
|
---|
4770 | DoKeyIVConfig = 0U;
|
---|
4771 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
---|
4772 | }
|
---|
4773 | else
|
---|
4774 | {
|
---|
4775 | /* If the Key and IV configuration has to be done only once
|
---|
4776 | and if it has not been done already, do it and set KeyIVConfig
|
---|
4777 | to keep track it won't have to be done again next time */
|
---|
4778 | hcryp->KeyIVConfig = 1U;
|
---|
4779 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
---|
4780 | }
|
---|
4781 | }
|
---|
4782 | else
|
---|
4783 | {
|
---|
4784 | hcryp->SizesSum = hcryp->Size;
|
---|
4785 | }
|
---|
4786 |
|
---|
4787 | /* Configure Key, IV and process message (header and payload) */
|
---|
4788 | if (DoKeyIVConfig == 1U)
|
---|
4789 | {
|
---|
4790 | /* Reset CrypHeaderCount */
|
---|
4791 | hcryp->CrypHeaderCount = 0U;
|
---|
4792 |
|
---|
4793 | #if defined(CRYP)
|
---|
4794 |
|
---|
4795 | /************ Init phase ************/
|
---|
4796 |
|
---|
4797 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
---|
4798 |
|
---|
4799 | /* Set the key */
|
---|
4800 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
4801 |
|
---|
4802 | /* Set the initialization vector (IV) with CTR1 information */
|
---|
4803 | hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
|
---|
4804 | hcryp->Instance->IV0RR = hcryp->Init.B0[1];
|
---|
4805 | hcryp->Instance->IV1LR = hcryp->Init.B0[2];
|
---|
4806 | hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1) | CRYP_CCM_CTR1_2;
|
---|
4807 |
|
---|
4808 | /* Enable the CRYP peripheral */
|
---|
4809 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4810 |
|
---|
4811 | /*Write the B0 packet into CRYP_DIN Register*/
|
---|
4812 | if (hcryp->Init.DataType == CRYP_DATATYPE_8B)
|
---|
4813 | {
|
---|
4814 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0));
|
---|
4815 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 1));
|
---|
4816 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 2));
|
---|
4817 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 3));
|
---|
4818 | }
|
---|
4819 | else if (hcryp->Init.DataType == CRYP_DATATYPE_16B)
|
---|
4820 | {
|
---|
4821 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0), 16);
|
---|
4822 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 1), 16);
|
---|
4823 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 2), 16);
|
---|
4824 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 3), 16);
|
---|
4825 | }
|
---|
4826 | else if (hcryp->Init.DataType == CRYP_DATATYPE_1B)
|
---|
4827 | {
|
---|
4828 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0));
|
---|
4829 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 1));
|
---|
4830 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 2));
|
---|
4831 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 3));
|
---|
4832 | }
|
---|
4833 | else
|
---|
4834 | {
|
---|
4835 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0);
|
---|
4836 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 1);
|
---|
4837 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 2);
|
---|
4838 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 3);
|
---|
4839 | }
|
---|
4840 | /*Wait for the CRYPEN bit to be cleared*/
|
---|
4841 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
4842 | do
|
---|
4843 | {
|
---|
4844 | count-- ;
|
---|
4845 | if (count == 0U)
|
---|
4846 | {
|
---|
4847 | /* Disable the CRYP peripheral clock */
|
---|
4848 | __HAL_CRYP_DISABLE(hcryp);
|
---|
4849 |
|
---|
4850 | /* Change state */
|
---|
4851 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
4852 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
4853 |
|
---|
4854 | /* Process unlocked */
|
---|
4855 | __HAL_UNLOCK(hcryp);
|
---|
4856 | return HAL_ERROR;
|
---|
4857 | }
|
---|
4858 | } while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
|
---|
4859 |
|
---|
4860 | /* Select header phase */
|
---|
4861 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
4862 |
|
---|
4863 | } /* end of if (DoKeyIVConfig == 1U) */
|
---|
4864 |
|
---|
4865 | /* Enable interrupts */
|
---|
4866 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI);
|
---|
4867 |
|
---|
4868 | /* Enable CRYP */
|
---|
4869 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4870 |
|
---|
4871 | #else /* AES */
|
---|
4872 |
|
---|
4873 | /*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
|
---|
4874 | /* Select header phase */
|
---|
4875 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
4876 |
|
---|
4877 | /* configured mode and encryption mode */
|
---|
4878 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
4879 |
|
---|
4880 | /* Set the key */
|
---|
4881 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
4882 |
|
---|
4883 | /* Set the initialization vector with zero values*/
|
---|
4884 | hcryp->Instance->IVR3 = 0U;
|
---|
4885 | hcryp->Instance->IVR2 = 0U;
|
---|
4886 | hcryp->Instance->IVR1 = 0U;
|
---|
4887 | hcryp->Instance->IVR0 = 0U;
|
---|
4888 |
|
---|
4889 | /* Enable interrupts */
|
---|
4890 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
---|
4891 | /* Enable the CRYP peripheral */
|
---|
4892 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4893 |
|
---|
4894 | /*Write the B0 packet into CRYP_DIN*/
|
---|
4895 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0);
|
---|
4896 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 1);
|
---|
4897 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 2);
|
---|
4898 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 3);
|
---|
4899 |
|
---|
4900 | } /* end of if (DoKeyIVConfig == 1U) */
|
---|
4901 | #endif /* End AES or CRYP */
|
---|
4902 |
|
---|
4903 | /* Return function status */
|
---|
4904 | return HAL_OK;
|
---|
4905 | }
|
---|
4906 | /**
|
---|
4907 | * @brief AES CCM encryption/decryption process in DMA mode
|
---|
4908 | * for TinyAES IP, no encrypt/decrypt performed, only authentication preparation.
|
---|
4909 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
4910 | * the configuration information for CRYP module
|
---|
4911 | * @retval HAL status
|
---|
4912 | */
|
---|
4913 | static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
|
---|
4914 | {
|
---|
4915 | uint32_t wordsize;
|
---|
4916 | __IO uint32_t count = 0U;
|
---|
4917 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
---|
4918 | #if defined(AES)
|
---|
4919 | uint32_t loopcounter;
|
---|
4920 | uint32_t npblb;
|
---|
4921 | uint32_t lastwordsize;
|
---|
4922 | #endif
|
---|
4923 |
|
---|
4924 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
---|
4925 | {
|
---|
4926 | if (hcryp->KeyIVConfig == 1U)
|
---|
4927 | {
|
---|
4928 | /* If the Key and IV configuration has to be done only once
|
---|
4929 | and if it has already been done, skip it */
|
---|
4930 | DoKeyIVConfig = 0U;
|
---|
4931 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
---|
4932 | }
|
---|
4933 | else
|
---|
4934 | {
|
---|
4935 | /* If the Key and IV configuration has to be done only once
|
---|
4936 | and if it has not been done already, do it and set KeyIVConfig
|
---|
4937 | to keep track it won't have to be done again next time */
|
---|
4938 | hcryp->KeyIVConfig = 1U;
|
---|
4939 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
---|
4940 | }
|
---|
4941 | }
|
---|
4942 | else
|
---|
4943 | {
|
---|
4944 | hcryp->SizesSum = hcryp->Size;
|
---|
4945 | }
|
---|
4946 |
|
---|
4947 | if (DoKeyIVConfig == 1U)
|
---|
4948 | {
|
---|
4949 |
|
---|
4950 | /* Reset CrypHeaderCount */
|
---|
4951 | hcryp->CrypHeaderCount = 0U;
|
---|
4952 |
|
---|
4953 | #if defined(CRYP)
|
---|
4954 |
|
---|
4955 | /************************** Init phase **************************************/
|
---|
4956 |
|
---|
4957 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
---|
4958 |
|
---|
4959 | /* Set the key */
|
---|
4960 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
4961 |
|
---|
4962 | /* Set the initialization vector (IV) with CTR1 information */
|
---|
4963 | hcryp->Instance->IV0LR = (hcryp->Init.B0[0]) & CRYP_CCM_CTR1_0;
|
---|
4964 | hcryp->Instance->IV0RR = hcryp->Init.B0[1];
|
---|
4965 | hcryp->Instance->IV1LR = hcryp->Init.B0[2];
|
---|
4966 | hcryp->Instance->IV1RR = (hcryp->Init.B0[3] & CRYP_CCM_CTR1_1) | CRYP_CCM_CTR1_2;
|
---|
4967 |
|
---|
4968 | /* Enable the CRYP peripheral */
|
---|
4969 | __HAL_CRYP_ENABLE(hcryp);
|
---|
4970 |
|
---|
4971 | /*Write the B0 packet into CRYP_DIN Register*/
|
---|
4972 | if (hcryp->Init.DataType == CRYP_DATATYPE_8B)
|
---|
4973 | {
|
---|
4974 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0));
|
---|
4975 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 1));
|
---|
4976 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 2));
|
---|
4977 | hcryp->Instance->DIN = __REV(*(uint32_t *)(hcryp->Init.B0 + 3));
|
---|
4978 | }
|
---|
4979 | else if (hcryp->Init.DataType == CRYP_DATATYPE_16B)
|
---|
4980 | {
|
---|
4981 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0), 16);
|
---|
4982 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 1), 16);
|
---|
4983 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 2), 16);
|
---|
4984 | hcryp->Instance->DIN = __ROR(*(uint32_t *)(hcryp->Init.B0 + 3), 16);
|
---|
4985 | }
|
---|
4986 | else if (hcryp->Init.DataType == CRYP_DATATYPE_1B)
|
---|
4987 | {
|
---|
4988 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0));
|
---|
4989 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 1));
|
---|
4990 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 2));
|
---|
4991 | hcryp->Instance->DIN = __RBIT(*(uint32_t *)(hcryp->Init.B0 + 3));
|
---|
4992 | }
|
---|
4993 | else
|
---|
4994 | {
|
---|
4995 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0);
|
---|
4996 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 1);
|
---|
4997 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 2);
|
---|
4998 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.B0 + 3);
|
---|
4999 | }
|
---|
5000 |
|
---|
5001 | /*Wait for the CRYPEN bit to be cleared*/
|
---|
5002 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
5003 | do
|
---|
5004 | {
|
---|
5005 | count-- ;
|
---|
5006 | if (count == 0U)
|
---|
5007 | {
|
---|
5008 | /* Disable the CRYP peripheral clock */
|
---|
5009 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5010 |
|
---|
5011 | /* Change state */
|
---|
5012 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5013 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5014 |
|
---|
5015 | /* Process unlocked */
|
---|
5016 | __HAL_UNLOCK(hcryp);
|
---|
5017 | return HAL_ERROR;
|
---|
5018 | }
|
---|
5019 | } while ((hcryp->Instance->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN);
|
---|
5020 |
|
---|
5021 | #else /* AES */
|
---|
5022 |
|
---|
5023 | /*AES2v1.1.1 : CCM authentication : no init phase, only header and final phase */
|
---|
5024 | /* Select header phase */
|
---|
5025 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
5026 |
|
---|
5027 | /* configured encryption mode */
|
---|
5028 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
---|
5029 |
|
---|
5030 | /* Set the key */
|
---|
5031 | CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
---|
5032 |
|
---|
5033 | /* Set the initialization vector with zero values*/
|
---|
5034 | hcryp->Instance->IVR3 = 0U;
|
---|
5035 | hcryp->Instance->IVR2 = 0U;
|
---|
5036 | hcryp->Instance->IVR1 = 0U;
|
---|
5037 | hcryp->Instance->IVR0 = 0U;
|
---|
5038 |
|
---|
5039 | /* Enable the CRYP peripheral */
|
---|
5040 | __HAL_CRYP_ENABLE(hcryp);
|
---|
5041 |
|
---|
5042 | /*Write the B0 packet into CRYP_DIN*/
|
---|
5043 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0);
|
---|
5044 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 1);
|
---|
5045 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 2);
|
---|
5046 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.B0 + 3);
|
---|
5047 |
|
---|
5048 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
5049 | do
|
---|
5050 | {
|
---|
5051 | count-- ;
|
---|
5052 | if (count == 0U)
|
---|
5053 | {
|
---|
5054 | /* Disable the CRYP peripheral clock */
|
---|
5055 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5056 |
|
---|
5057 | /* Change state */
|
---|
5058 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5059 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5060 |
|
---|
5061 | /* Process Unlocked */
|
---|
5062 | __HAL_UNLOCK(hcryp);
|
---|
5063 | return HAL_ERROR;
|
---|
5064 | }
|
---|
5065 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
5066 | /* Clear CCF flag */
|
---|
5067 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
5068 |
|
---|
5069 | /* Set the phase */
|
---|
5070 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
5071 |
|
---|
5072 | /* From that point the whole message must be processed, first the Header then the payload.
|
---|
5073 | First the Header block(B1) : associated data length expressed in bytes concatenated with Associated Data (A)*/
|
---|
5074 |
|
---|
5075 | if (hcryp->Init.HeaderSize != 0U)
|
---|
5076 | {
|
---|
5077 | if ((hcryp->Init.HeaderSize % 4U) == 0U)
|
---|
5078 | {
|
---|
5079 | /* HeaderSize %4, no padding */
|
---|
5080 | for (loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter += 4U)
|
---|
5081 | {
|
---|
5082 | /* Write the Input block in the Data Input register */
|
---|
5083 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5084 | hcryp->CrypHeaderCount++ ;
|
---|
5085 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5086 | hcryp->CrypHeaderCount++ ;
|
---|
5087 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5088 | hcryp->CrypHeaderCount++ ;
|
---|
5089 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5090 | hcryp->CrypHeaderCount++ ;
|
---|
5091 |
|
---|
5092 | /* wait until the end of computation */
|
---|
5093 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
5094 | do
|
---|
5095 | {
|
---|
5096 | count-- ;
|
---|
5097 | if (count == 0U)
|
---|
5098 | {
|
---|
5099 | /* Disable the CRYP peripheral clock */
|
---|
5100 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5101 |
|
---|
5102 | /* Change state */
|
---|
5103 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5104 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5105 |
|
---|
5106 | /* Process Unlocked */
|
---|
5107 | __HAL_UNLOCK(hcryp);
|
---|
5108 | return HAL_ERROR;
|
---|
5109 | }
|
---|
5110 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
5111 | /* Clear CCF flag */
|
---|
5112 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
5113 | }
|
---|
5114 | }
|
---|
5115 | else
|
---|
5116 | {
|
---|
5117 | /*Write Header block in the IN FIFO without last block */
|
---|
5118 | for (loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize) - (hcryp->Init.HeaderSize % 4U))); loopcounter += 4U)
|
---|
5119 | {
|
---|
5120 | /* Write the input block in the data input register */
|
---|
5121 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5122 | hcryp->CrypHeaderCount++ ;
|
---|
5123 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5124 | hcryp->CrypHeaderCount++ ;
|
---|
5125 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5126 | hcryp->CrypHeaderCount++ ;
|
---|
5127 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5128 | hcryp->CrypHeaderCount++ ;
|
---|
5129 |
|
---|
5130 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
5131 | do
|
---|
5132 | {
|
---|
5133 | count-- ;
|
---|
5134 | if (count == 0U)
|
---|
5135 | {
|
---|
5136 | /* Disable the CRYP peripheral clock */
|
---|
5137 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5138 |
|
---|
5139 | /* Change state */
|
---|
5140 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5141 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5142 |
|
---|
5143 | /* Process Unlocked */
|
---|
5144 | __HAL_UNLOCK(hcryp);
|
---|
5145 | return HAL_ERROR;
|
---|
5146 | }
|
---|
5147 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
5148 | /* Clear CCF flag */
|
---|
5149 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
5150 | }
|
---|
5151 | /* Last block optionally pad the data with zeros*/
|
---|
5152 | for (loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize % 4U)); loopcounter++)
|
---|
5153 | {
|
---|
5154 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5155 | hcryp->CrypHeaderCount++ ;
|
---|
5156 | }
|
---|
5157 | while (loopcounter < 4U)
|
---|
5158 | {
|
---|
5159 | /* Pad the data with zeros to have a complete block */
|
---|
5160 | hcryp->Instance->DINR = 0x0U;
|
---|
5161 | loopcounter++;
|
---|
5162 | }
|
---|
5163 |
|
---|
5164 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
5165 | do
|
---|
5166 | {
|
---|
5167 | count-- ;
|
---|
5168 | if (count == 0U)
|
---|
5169 | {
|
---|
5170 | /* Disable the CRYP peripheral clock */
|
---|
5171 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5172 |
|
---|
5173 | /* Change state */
|
---|
5174 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5175 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5176 |
|
---|
5177 | /* Process Unlocked */
|
---|
5178 | __HAL_UNLOCK(hcryp);
|
---|
5179 | return HAL_ERROR;
|
---|
5180 | }
|
---|
5181 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
5182 | /* Clear CCF flag */
|
---|
5183 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
5184 | }
|
---|
5185 | }
|
---|
5186 | } /* if (DoKeyIVConfig == 1U) */
|
---|
5187 | /* Then the payload: cleartext payload (not the ciphertext payload).
|
---|
5188 | Write input Data, no output Data to get */
|
---|
5189 | if (hcryp->Size != 0U)
|
---|
5190 | {
|
---|
5191 | if (hcryp->Size >= 16U)
|
---|
5192 | {
|
---|
5193 | if ((hcryp->Size % 16U) == 0U)
|
---|
5194 | {
|
---|
5195 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
5196 | }
|
---|
5197 | else /*to compute last word<128bits, otherwise it will not be encrypted/decrypted */
|
---|
5198 | {
|
---|
5199 | wordsize = (uint32_t)(hcryp->Size) + (16U - ((uint32_t)(hcryp->Size) % 16U)) ;
|
---|
5200 |
|
---|
5201 | /* Set the input and output addresses and start DMA transfer, pCrypOutBuffPtr size should be %4 */
|
---|
5202 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), ((uint16_t)wordsize / 4U),
|
---|
5203 | (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
5204 | }
|
---|
5205 | }
|
---|
5206 | if ((hcryp->Size < 16U) != 0U)
|
---|
5207 | {
|
---|
5208 | /* Compute the number of padding bytes in last block of payload */
|
---|
5209 | npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
---|
5210 |
|
---|
5211 | /* Number of valid words (lastwordsize) in last block */
|
---|
5212 | if ((npblb % 4U) == 0U)
|
---|
5213 | {
|
---|
5214 | lastwordsize = (16U - npblb) / 4U;
|
---|
5215 | }
|
---|
5216 | else
|
---|
5217 | {
|
---|
5218 | lastwordsize = ((16U - npblb) / 4U) + 1U;
|
---|
5219 | }
|
---|
5220 | /* Last block optionally pad the data with zeros*/
|
---|
5221 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++)
|
---|
5222 | {
|
---|
5223 | /* Write the last input block in the IN FIFO */
|
---|
5224 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5225 | hcryp->CrypInCount++;
|
---|
5226 | }
|
---|
5227 | while (loopcounter < 4U)
|
---|
5228 | {
|
---|
5229 | /* Pad the data with zeros to have a complete block */
|
---|
5230 | hcryp->Instance->DINR = 0U;
|
---|
5231 | loopcounter++;
|
---|
5232 | }
|
---|
5233 | count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
---|
5234 | do
|
---|
5235 | {
|
---|
5236 | count-- ;
|
---|
5237 | if (count == 0U)
|
---|
5238 | {
|
---|
5239 | /* Disable the CRYP peripheral clock */
|
---|
5240 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5241 |
|
---|
5242 | /* Change state */
|
---|
5243 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5244 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5245 |
|
---|
5246 | /* Process Unlocked */
|
---|
5247 | __HAL_UNLOCK(hcryp);
|
---|
5248 | return HAL_ERROR;
|
---|
5249 | }
|
---|
5250 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
5251 | /* Clear CCF flag */
|
---|
5252 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
5253 |
|
---|
5254 | /* Process unlocked */
|
---|
5255 | __HAL_UNLOCK(hcryp);
|
---|
5256 |
|
---|
5257 | /* Change the CRYP state and phase */
|
---|
5258 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5259 | }
|
---|
5260 | }
|
---|
5261 | else
|
---|
5262 | {
|
---|
5263 | /* Process unLocked */
|
---|
5264 | __HAL_UNLOCK(hcryp);
|
---|
5265 |
|
---|
5266 | /* Change the CRYP state and phase */
|
---|
5267 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5268 | }
|
---|
5269 | #endif /* AES */
|
---|
5270 | #if defined(CRYP)
|
---|
5271 | /********************* Header phase *****************************************/
|
---|
5272 |
|
---|
5273 | if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
|
---|
5274 | {
|
---|
5275 | return HAL_ERROR;
|
---|
5276 | }
|
---|
5277 |
|
---|
5278 | /******************** Payload phase *****************************************/
|
---|
5279 |
|
---|
5280 | /* Set the phase */
|
---|
5281 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
5282 |
|
---|
5283 | /* Disable the CRYP peripheral */
|
---|
5284 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5285 |
|
---|
5286 | /* Select payload phase once the header phase is performed */
|
---|
5287 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
---|
5288 |
|
---|
5289 | } /* if (DoKeyIVConfig == 1U) */
|
---|
5290 | if (hcryp->Size != 0U)
|
---|
5291 | {
|
---|
5292 | /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption & CCM Decryption
|
---|
5293 | Workaround is implemented in polling mode, so if last block of
|
---|
5294 | payload <128bit don't use HAL_CRYP_AESGCM_DMA otherwise TAG is incorrectly generated for GCM Encryption. */
|
---|
5295 | /* Set the input and output addresses and start DMA transfer */
|
---|
5296 | if ((hcryp->Size % 16U) == 0U)
|
---|
5297 | {
|
---|
5298 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), hcryp->Size / 4U, (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
5299 | }
|
---|
5300 | else
|
---|
5301 | {
|
---|
5302 | wordsize = (uint32_t)(hcryp->Size) + 16U - ((uint32_t)(hcryp->Size) % 16U) ;
|
---|
5303 |
|
---|
5304 | /* Set the input and output addresses and start DMA transfer, pCrypOutBuffPtr size should be %4*/
|
---|
5305 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (uint16_t)wordsize / 4U,
|
---|
5306 | (uint32_t)(hcryp->pCrypOutBuffPtr));
|
---|
5307 | }
|
---|
5308 | }
|
---|
5309 | else /*Size = 0*/
|
---|
5310 | {
|
---|
5311 | /* Process unlocked */
|
---|
5312 | __HAL_UNLOCK(hcryp);
|
---|
5313 |
|
---|
5314 | /* Change the CRYP state and phase */
|
---|
5315 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5316 | }
|
---|
5317 | #endif /* CRYP */
|
---|
5318 | /* Return function status */
|
---|
5319 | return HAL_OK;
|
---|
5320 | }
|
---|
5321 |
|
---|
5322 | /**
|
---|
5323 | * @brief Sets the payload phase in iterrupt mode
|
---|
5324 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
5325 | * the configuration information for CRYP module
|
---|
5326 | * @retval state
|
---|
5327 | */
|
---|
5328 | static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp)
|
---|
5329 | {
|
---|
5330 | uint32_t loopcounter;
|
---|
5331 | uint32_t temp[4]; /* Temporary CrypOutBuff */
|
---|
5332 | uint32_t lastwordsize;
|
---|
5333 | uint32_t npblb;
|
---|
5334 | uint32_t i;
|
---|
5335 | #if defined(AES)
|
---|
5336 | uint16_t outcount; /* Temporary CrypOutCount Value */
|
---|
5337 | #endif /* AES */
|
---|
5338 |
|
---|
5339 | /***************************** Payload phase *******************************/
|
---|
5340 |
|
---|
5341 | #if defined(CRYP)
|
---|
5342 | if (hcryp->Size == 0U)
|
---|
5343 | {
|
---|
5344 | /* Disable interrupts */
|
---|
5345 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
---|
5346 |
|
---|
5347 | /* Process unlocked */
|
---|
5348 | __HAL_UNLOCK(hcryp);
|
---|
5349 |
|
---|
5350 | /* Change the CRYP state */
|
---|
5351 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5352 | }
|
---|
5353 |
|
---|
5354 | else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
|
---|
5355 | {
|
---|
5356 | /* Write the input block in the IN FIFO */
|
---|
5357 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5358 | hcryp->CrypInCount++;
|
---|
5359 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5360 | hcryp->CrypInCount++;
|
---|
5361 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5362 | hcryp->CrypInCount++;
|
---|
5363 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5364 | hcryp->CrypInCount++;
|
---|
5365 | if (((hcryp->Size / 4U) == hcryp->CrypInCount) && ((hcryp->Size % 16U) == 0U))
|
---|
5366 | {
|
---|
5367 | /* Disable interrupts */
|
---|
5368 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
---|
5369 |
|
---|
5370 | /* Call the input data transfer complete callback */
|
---|
5371 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
---|
5372 | /*Call registered Input complete callback*/
|
---|
5373 | hcryp->InCpltCallback(hcryp);
|
---|
5374 | #else
|
---|
5375 | /*Call legacy weak Input complete callback*/
|
---|
5376 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
5377 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
5378 | }
|
---|
5379 | if (hcryp->CrypOutCount < (hcryp->Size / 4U))
|
---|
5380 | {
|
---|
5381 | /* Read the output block from the Output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */
|
---|
5382 | for (i = 0U; i < 4U; i++)
|
---|
5383 | {
|
---|
5384 | temp[i] = hcryp->Instance->DOUT;
|
---|
5385 | }
|
---|
5386 | i = 0U;
|
---|
5387 | while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 4U))
|
---|
5388 | {
|
---|
5389 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
5390 | hcryp->CrypOutCount++;
|
---|
5391 | i++;
|
---|
5392 | }
|
---|
5393 | if (((hcryp->Size / 4U) == hcryp->CrypOutCount) && ((hcryp->Size % 16U) == 0U))
|
---|
5394 | {
|
---|
5395 | /* Disable interrupts */
|
---|
5396 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
|
---|
5397 |
|
---|
5398 | /* Change the CRYP state */
|
---|
5399 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5400 |
|
---|
5401 | /* Disable CRYP */
|
---|
5402 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5403 |
|
---|
5404 | /* Process unlocked */
|
---|
5405 | __HAL_UNLOCK(hcryp);
|
---|
5406 |
|
---|
5407 | /* Call output transfer complete callback */
|
---|
5408 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
5409 | /*Call registered Output complete callback*/
|
---|
5410 | hcryp->OutCpltCallback(hcryp);
|
---|
5411 | #else
|
---|
5412 | /*Call legacy weak Output complete callback*/
|
---|
5413 | HAL_CRYP_OutCpltCallback(hcryp);
|
---|
5414 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
5415 | }
|
---|
5416 | }
|
---|
5417 | }
|
---|
5418 | else if ((hcryp->Size % 16U) != 0U)
|
---|
5419 | {
|
---|
5420 | /* Size should be %4 in word and %16 in byte otherwise TAG will be incorrectly generated for GCM Encryption & CCM Decryption
|
---|
5421 | Workaround is implemented in polling mode, so if last block of
|
---|
5422 | payload <128bit don't use CRYP_AESGCM_Encrypt_IT otherwise TAG is incorrectly generated. */
|
---|
5423 |
|
---|
5424 | /* Compute the number of padding bytes in last block of payload */
|
---|
5425 | npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
---|
5426 |
|
---|
5427 | /* Number of valid words (lastwordsize) in last block */
|
---|
5428 | if ((npblb % 4U) == 0U)
|
---|
5429 | {
|
---|
5430 | lastwordsize = (16U - npblb) / 4U;
|
---|
5431 | }
|
---|
5432 | else
|
---|
5433 | {
|
---|
5434 | lastwordsize = ((16U - npblb) / 4U) + 1U;
|
---|
5435 | }
|
---|
5436 |
|
---|
5437 | /* Last block optionally pad the data with zeros*/
|
---|
5438 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
---|
5439 | {
|
---|
5440 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5441 | hcryp->CrypInCount++;
|
---|
5442 | }
|
---|
5443 | while (loopcounter < 4U)
|
---|
5444 | {
|
---|
5445 | /* Pad the data with zeros to have a complete block */
|
---|
5446 | hcryp->Instance->DIN = 0x0U;
|
---|
5447 | loopcounter++;
|
---|
5448 | }
|
---|
5449 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
---|
5450 |
|
---|
5451 | if ((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U)
|
---|
5452 | {
|
---|
5453 | for (i = 0U; i < 4U; i++)
|
---|
5454 | {
|
---|
5455 | temp[i] = hcryp->Instance->DOUT;
|
---|
5456 | }
|
---|
5457 | if (((hcryp->Size) / 4U) == 0U)
|
---|
5458 | {
|
---|
5459 | for (i = 0U; i < ((uint32_t)(hcryp->Size) % 4U); i++)
|
---|
5460 | {
|
---|
5461 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
5462 | hcryp->CrypOutCount++;
|
---|
5463 | }
|
---|
5464 | }
|
---|
5465 | i = 0x0U;
|
---|
5466 | while (((hcryp->CrypOutCount < ((hcryp->Size) / 4U))) && (i < 4U))
|
---|
5467 | {
|
---|
5468 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
5469 | hcryp->CrypOutCount++;
|
---|
5470 | i++;
|
---|
5471 | }
|
---|
5472 | }
|
---|
5473 | if (hcryp->CrypOutCount >= (hcryp->Size / 4U))
|
---|
5474 | {
|
---|
5475 | /* Disable interrupts */
|
---|
5476 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI | CRYP_IT_INI);
|
---|
5477 |
|
---|
5478 | /* Change the CRYP peripheral state */
|
---|
5479 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5480 |
|
---|
5481 | /* Process unlocked */
|
---|
5482 | __HAL_UNLOCK(hcryp);
|
---|
5483 |
|
---|
5484 | /* Call output transfer complete callback */
|
---|
5485 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
5486 | /*Call registered Output complete callback*/
|
---|
5487 | hcryp->OutCpltCallback(hcryp);
|
---|
5488 | #else
|
---|
5489 | /*Call legacy weak Output complete callback*/
|
---|
5490 | HAL_CRYP_OutCpltCallback(hcryp);
|
---|
5491 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
5492 | }
|
---|
5493 | }
|
---|
5494 | else
|
---|
5495 | {
|
---|
5496 | /* Nothing to do */
|
---|
5497 | }
|
---|
5498 | #else /* AES */
|
---|
5499 |
|
---|
5500 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/
|
---|
5501 | for (i = 0U; i < 4U; i++)
|
---|
5502 | {
|
---|
5503 | temp[i] = hcryp->Instance->DOUTR;
|
---|
5504 | }
|
---|
5505 | i = 0U;
|
---|
5506 | while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
---|
5507 | {
|
---|
5508 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
---|
5509 | hcryp->CrypOutCount++;
|
---|
5510 | i++;
|
---|
5511 | }
|
---|
5512 | /*Temporary CrypOutCount Value*/
|
---|
5513 | outcount = hcryp->CrypOutCount;
|
---|
5514 |
|
---|
5515 | if ((hcryp->CrypOutCount >= (hcryp->Size / 4U)) && ((outcount * 4U) >= hcryp->Size))
|
---|
5516 | {
|
---|
5517 | /* Disable computation complete flag and errors interrupts */
|
---|
5518 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
---|
5519 |
|
---|
5520 | /* Change the CRYP state */
|
---|
5521 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5522 |
|
---|
5523 | /* Process unlocked */
|
---|
5524 | __HAL_UNLOCK(hcryp);
|
---|
5525 |
|
---|
5526 | /* Call output transfer complete callback */
|
---|
5527 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
5528 | /*Call registered Output complete callback*/
|
---|
5529 | hcryp->OutCpltCallback(hcryp);
|
---|
5530 | #else
|
---|
5531 | /*Call legacy weak Output complete callback*/
|
---|
5532 | HAL_CRYP_OutCpltCallback(hcryp);
|
---|
5533 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
5534 | }
|
---|
5535 |
|
---|
5536 | else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
|
---|
5537 | {
|
---|
5538 | /* Write the input block in the IN FIFO */
|
---|
5539 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5540 | hcryp->CrypInCount++;
|
---|
5541 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5542 | hcryp->CrypInCount++;
|
---|
5543 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5544 | hcryp->CrypInCount++;
|
---|
5545 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5546 | hcryp->CrypInCount++;
|
---|
5547 | if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
---|
5548 | {
|
---|
5549 | /* Call Input transfer complete callback */
|
---|
5550 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
5551 | /*Call registered Input complete callback*/
|
---|
5552 | hcryp->InCpltCallback(hcryp);
|
---|
5553 | #else
|
---|
5554 | /*Call legacy weak Input complete callback*/
|
---|
5555 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
5556 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
5557 | }
|
---|
5558 | }
|
---|
5559 | else /* Last block of payload < 128bit*/
|
---|
5560 | {
|
---|
5561 | /* Workaround not implemented, Size should be %4 otherwise Tag will be incorrectly
|
---|
5562 | generated for GCM Encryption & CCM Decryption. Workaround is implemented in polling mode, so if last block of
|
---|
5563 | payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption & CCM Decryption. */
|
---|
5564 |
|
---|
5565 | /* Compute the number of padding bytes in last block of payload */
|
---|
5566 | npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
---|
5567 |
|
---|
5568 | /* Number of valid words (lastwordsize) in last block */
|
---|
5569 | if ((npblb % 4U) == 0U)
|
---|
5570 | {
|
---|
5571 | lastwordsize = (16U - npblb) / 4U;
|
---|
5572 | }
|
---|
5573 | else
|
---|
5574 | {
|
---|
5575 | lastwordsize = ((16U - npblb) / 4U) + 1U;
|
---|
5576 | }
|
---|
5577 |
|
---|
5578 | /* Last block optionally pad the data with zeros*/
|
---|
5579 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
---|
5580 | {
|
---|
5581 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
5582 | hcryp->CrypInCount++;
|
---|
5583 | }
|
---|
5584 | while (loopcounter < 4U)
|
---|
5585 | {
|
---|
5586 | /* pad the data with zeros to have a complete block */
|
---|
5587 | hcryp->Instance->DINR = 0x0U;
|
---|
5588 | loopcounter++;
|
---|
5589 | }
|
---|
5590 | }
|
---|
5591 | #endif /* AES */
|
---|
5592 |
|
---|
5593 | }
|
---|
5594 |
|
---|
5595 |
|
---|
5596 | /**
|
---|
5597 | * @brief Sets the header phase in polling mode
|
---|
5598 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
5599 | * the configuration information for CRYP module(Header & HeaderSize)
|
---|
5600 | * @param Timeout: Timeout value
|
---|
5601 | * @retval state
|
---|
5602 | */
|
---|
5603 | static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
5604 | {
|
---|
5605 | uint32_t loopcounter;
|
---|
5606 | uint32_t size_in_bytes;
|
---|
5607 | uint32_t tmp;
|
---|
5608 | uint32_t mask[12] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
---|
5609 | 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
---|
5610 | 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU}; /* 8-bit data type */
|
---|
5611 |
|
---|
5612 | /***************************** Header phase for GCM/GMAC or CCM *********************************/
|
---|
5613 |
|
---|
5614 | if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
---|
5615 | {
|
---|
5616 | size_in_bytes = hcryp->Init.HeaderSize * 4U;
|
---|
5617 | }
|
---|
5618 | else
|
---|
5619 | {
|
---|
5620 | size_in_bytes = hcryp->Init.HeaderSize;
|
---|
5621 | }
|
---|
5622 |
|
---|
5623 | if (size_in_bytes != 0U)
|
---|
5624 | {
|
---|
5625 |
|
---|
5626 | #if defined(CRYP)
|
---|
5627 |
|
---|
5628 | /* Select header phase */
|
---|
5629 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
5630 |
|
---|
5631 | /* Enable the CRYP peripheral */
|
---|
5632 | __HAL_CRYP_ENABLE(hcryp);
|
---|
5633 |
|
---|
5634 | if ((size_in_bytes % 16U) == 0U)
|
---|
5635 | {
|
---|
5636 | /* HeaderSize %4, no padding */
|
---|
5637 | for (loopcounter = 0U; (loopcounter < (size_in_bytes / 4U)); loopcounter += 4U)
|
---|
5638 | {
|
---|
5639 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5640 | hcryp->CrypHeaderCount++ ;
|
---|
5641 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5642 | hcryp->CrypHeaderCount++ ;
|
---|
5643 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5644 | hcryp->CrypHeaderCount++ ;
|
---|
5645 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5646 | hcryp->CrypHeaderCount++ ;
|
---|
5647 |
|
---|
5648 | /* Wait for IFEM to be raised */
|
---|
5649 | if (CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
|
---|
5650 | {
|
---|
5651 | /* Disable the CRYP peripheral clock */
|
---|
5652 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5653 |
|
---|
5654 | /* Change state */
|
---|
5655 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5656 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5657 |
|
---|
5658 | /* Process unlocked */
|
---|
5659 | __HAL_UNLOCK(hcryp);
|
---|
5660 | return HAL_ERROR;
|
---|
5661 | }
|
---|
5662 | }
|
---|
5663 | }
|
---|
5664 | else
|
---|
5665 | {
|
---|
5666 | /*Write header block in the IN FIFO without last block */
|
---|
5667 | for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
---|
5668 | {
|
---|
5669 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5670 | hcryp->CrypHeaderCount++ ;
|
---|
5671 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5672 | hcryp->CrypHeaderCount++ ;
|
---|
5673 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5674 | hcryp->CrypHeaderCount++ ;
|
---|
5675 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5676 | hcryp->CrypHeaderCount++ ;
|
---|
5677 |
|
---|
5678 | /* Wait for IFEM to be raised */
|
---|
5679 | if (CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
|
---|
5680 | {
|
---|
5681 | /* Disable the CRYP peripheral clock */
|
---|
5682 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5683 |
|
---|
5684 | /* Change state */
|
---|
5685 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5686 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5687 |
|
---|
5688 | /* Process unlocked */
|
---|
5689 | __HAL_UNLOCK(hcryp);
|
---|
5690 | return HAL_ERROR;
|
---|
5691 | }
|
---|
5692 | }
|
---|
5693 | /* Last block optionally pad the data with zeros*/
|
---|
5694 | for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 4U) % 4U)); loopcounter++)
|
---|
5695 | {
|
---|
5696 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5697 | hcryp->CrypHeaderCount++ ;
|
---|
5698 | }
|
---|
5699 | /* If the header size is a multiple of words */
|
---|
5700 | if ((size_in_bytes % 4U) == 0U)
|
---|
5701 | {
|
---|
5702 | /* Pad the data with zeros to have a complete block */
|
---|
5703 | while (loopcounter < 4U)
|
---|
5704 | {
|
---|
5705 | hcryp->Instance->DIN = 0x0U;
|
---|
5706 | loopcounter++;
|
---|
5707 | }
|
---|
5708 | }
|
---|
5709 | else
|
---|
5710 | {
|
---|
5711 | /* Enter last bytes, padded with zeroes */
|
---|
5712 | tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5713 | tmp &= mask[(hcryp->Init.DataType * 2U) + (size_in_bytes % 4U)];
|
---|
5714 | hcryp->Instance->DIN = tmp;
|
---|
5715 | loopcounter++;
|
---|
5716 | /* Pad the data with zeros to have a complete block */
|
---|
5717 | while (loopcounter < 4U)
|
---|
5718 | {
|
---|
5719 | hcryp->Instance->DIN = 0x0U;
|
---|
5720 | loopcounter++;
|
---|
5721 | }
|
---|
5722 | }
|
---|
5723 | /* Wait for CCF IFEM to be raised */
|
---|
5724 | if (CRYP_WaitOnIFEMFlag(hcryp, Timeout) != HAL_OK)
|
---|
5725 | {
|
---|
5726 | /* Disable the CRYP peripheral clock */
|
---|
5727 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5728 |
|
---|
5729 | /* Change state */
|
---|
5730 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5731 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5732 |
|
---|
5733 | /* Process unlocked */
|
---|
5734 | __HAL_UNLOCK(hcryp);
|
---|
5735 | return HAL_ERROR;
|
---|
5736 | }
|
---|
5737 | }
|
---|
5738 | /* Wait until the complete message has been processed */
|
---|
5739 | if (CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
|
---|
5740 | {
|
---|
5741 | /* Disable the CRYP peripheral clock */
|
---|
5742 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5743 |
|
---|
5744 | /* Change state */
|
---|
5745 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5746 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5747 |
|
---|
5748 | /* Process unlocked & return error */
|
---|
5749 | __HAL_UNLOCK(hcryp);
|
---|
5750 | return HAL_ERROR;
|
---|
5751 | }
|
---|
5752 |
|
---|
5753 | #else /* AES */
|
---|
5754 |
|
---|
5755 | if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
---|
5756 | {
|
---|
5757 | /* Workaround 1 :only AES before re-enabling the IP, datatype can be configured.*/
|
---|
5758 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
---|
5759 |
|
---|
5760 | /* Select header phase */
|
---|
5761 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
5762 |
|
---|
5763 | /* Enable the CRYP peripheral */
|
---|
5764 | __HAL_CRYP_ENABLE(hcryp);
|
---|
5765 |
|
---|
5766 | }
|
---|
5767 | /* If size_in_bytes is a multiple of blocks (a multiple of four 32-bits words ) */
|
---|
5768 | if ((size_in_bytes % 16U) == 0U)
|
---|
5769 | {
|
---|
5770 | /* No padding */
|
---|
5771 | for (loopcounter = 0U; (loopcounter < (size_in_bytes / 4U)); loopcounter += 4U)
|
---|
5772 | {
|
---|
5773 | /* Write the input block in the data input register */
|
---|
5774 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5775 | hcryp->CrypHeaderCount++ ;
|
---|
5776 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5777 | hcryp->CrypHeaderCount++ ;
|
---|
5778 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5779 | hcryp->CrypHeaderCount++ ;
|
---|
5780 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5781 | hcryp->CrypHeaderCount++ ;
|
---|
5782 |
|
---|
5783 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
5784 | {
|
---|
5785 | /* Disable the CRYP peripheral clock */
|
---|
5786 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5787 |
|
---|
5788 | /* Change state */
|
---|
5789 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5790 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5791 |
|
---|
5792 | /* Process unlocked */
|
---|
5793 | __HAL_UNLOCK(hcryp);
|
---|
5794 | return HAL_ERROR;
|
---|
5795 | }
|
---|
5796 | /* Clear CCF flag */
|
---|
5797 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
5798 | }
|
---|
5799 | }
|
---|
5800 | else
|
---|
5801 | {
|
---|
5802 | /*Write header block in the IN FIFO without last block */
|
---|
5803 | for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
---|
5804 | {
|
---|
5805 | /* Write the input block in the data input register */
|
---|
5806 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5807 | hcryp->CrypHeaderCount++ ;
|
---|
5808 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5809 | hcryp->CrypHeaderCount++ ;
|
---|
5810 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5811 | hcryp->CrypHeaderCount++ ;
|
---|
5812 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5813 | hcryp->CrypHeaderCount++ ;
|
---|
5814 |
|
---|
5815 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
5816 | {
|
---|
5817 | /* Disable the CRYP peripheral clock */
|
---|
5818 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5819 |
|
---|
5820 | /* Change state */
|
---|
5821 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5822 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5823 |
|
---|
5824 | /* Process unlocked */
|
---|
5825 | __HAL_UNLOCK(hcryp);
|
---|
5826 | return HAL_ERROR;
|
---|
5827 | }
|
---|
5828 | /* Clear CCF flag */
|
---|
5829 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
5830 | }
|
---|
5831 | /* Write last complete words */
|
---|
5832 | for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 4U) % 4U)); loopcounter++)
|
---|
5833 | {
|
---|
5834 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5835 | hcryp->CrypHeaderCount++ ;
|
---|
5836 | }
|
---|
5837 | /* If the header size is a multiple of words */
|
---|
5838 | if ((size_in_bytes % 4U) == 0U)
|
---|
5839 | {
|
---|
5840 | /* Pad the data with zeros to have a complete block */
|
---|
5841 | while (loopcounter < 4U)
|
---|
5842 | {
|
---|
5843 | hcryp->Instance->DINR = 0x0U;
|
---|
5844 | loopcounter++;
|
---|
5845 | }
|
---|
5846 | }
|
---|
5847 | else
|
---|
5848 | {
|
---|
5849 | /* Enter last bytes, padded with zeroes */
|
---|
5850 | tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5851 | tmp &= mask[(hcryp->Init.DataType * 2U) + (size_in_bytes % 4U)];
|
---|
5852 | hcryp->Instance->DINR = tmp;
|
---|
5853 | loopcounter++;
|
---|
5854 | /* Pad the data with zeros to have a complete block */
|
---|
5855 | while (loopcounter < 4U)
|
---|
5856 | {
|
---|
5857 | hcryp->Instance->DINR = 0x0U;
|
---|
5858 | loopcounter++;
|
---|
5859 | }
|
---|
5860 | }
|
---|
5861 |
|
---|
5862 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
5863 | {
|
---|
5864 | /* Disable the CRYP peripheral clock */
|
---|
5865 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5866 |
|
---|
5867 | /* Change state */
|
---|
5868 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5869 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5870 |
|
---|
5871 | /* Process unlocked */
|
---|
5872 | __HAL_UNLOCK(hcryp);
|
---|
5873 | return HAL_ERROR;
|
---|
5874 | }
|
---|
5875 | /* Clear CCF flag */
|
---|
5876 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
5877 | }
|
---|
5878 | #endif /* End AES or CRYP */
|
---|
5879 | }
|
---|
5880 | else
|
---|
5881 | {
|
---|
5882 | #if defined(AES)
|
---|
5883 | if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
---|
5884 | {
|
---|
5885 | /*Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
|
---|
5886 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
---|
5887 |
|
---|
5888 | /* Select header phase */
|
---|
5889 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
5890 |
|
---|
5891 | /* Enable the CRYP peripheral */
|
---|
5892 | __HAL_CRYP_ENABLE(hcryp);
|
---|
5893 | }
|
---|
5894 | #endif /* AES */
|
---|
5895 | }
|
---|
5896 | /* Return function status */
|
---|
5897 | return HAL_OK;
|
---|
5898 | }
|
---|
5899 |
|
---|
5900 | /**
|
---|
5901 | * @brief Sets the header phase when using DMA in process
|
---|
5902 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
5903 | * the configuration information for CRYP module(Header & HeaderSize)
|
---|
5904 | * @retval None
|
---|
5905 | */
|
---|
5906 | static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp)
|
---|
5907 | {
|
---|
5908 | __IO uint32_t count = 0U;
|
---|
5909 | uint32_t loopcounter;
|
---|
5910 | uint32_t headersize_in_bytes;
|
---|
5911 | uint32_t tmp;
|
---|
5912 | uint32_t mask[12] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
---|
5913 | 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
---|
5914 | 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU}; /* 8-bit data type */
|
---|
5915 |
|
---|
5916 | /***************************** Header phase for GCM/GMAC or CCM *********************************/
|
---|
5917 | if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
---|
5918 | {
|
---|
5919 | headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
---|
5920 | }
|
---|
5921 | else
|
---|
5922 | {
|
---|
5923 | headersize_in_bytes = hcryp->Init.HeaderSize;
|
---|
5924 | }
|
---|
5925 |
|
---|
5926 | if (headersize_in_bytes != 0U)
|
---|
5927 | {
|
---|
5928 |
|
---|
5929 | #if defined(CRYP)
|
---|
5930 |
|
---|
5931 | /* Select header phase */
|
---|
5932 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
5933 |
|
---|
5934 | /* Enable the CRYP peripheral */
|
---|
5935 | __HAL_CRYP_ENABLE(hcryp);
|
---|
5936 |
|
---|
5937 | if ((headersize_in_bytes % 16U) == 0U)
|
---|
5938 | {
|
---|
5939 | /* HeaderSize %4, no padding */
|
---|
5940 | for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter += 4U)
|
---|
5941 | {
|
---|
5942 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5943 | hcryp->CrypHeaderCount++ ;
|
---|
5944 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5945 | hcryp->CrypHeaderCount++ ;
|
---|
5946 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5947 | hcryp->CrypHeaderCount++ ;
|
---|
5948 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5949 | hcryp->CrypHeaderCount++ ;
|
---|
5950 |
|
---|
5951 | /* Wait for IFEM to be raised */
|
---|
5952 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
---|
5953 | do
|
---|
5954 | {
|
---|
5955 | count-- ;
|
---|
5956 | if (count == 0U)
|
---|
5957 | {
|
---|
5958 | /* Disable the CRYP peripheral clock */
|
---|
5959 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5960 |
|
---|
5961 | /* Change state */
|
---|
5962 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5963 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5964 |
|
---|
5965 | /* Process unlocked */
|
---|
5966 | __HAL_UNLOCK(hcryp);
|
---|
5967 | return HAL_ERROR;
|
---|
5968 | }
|
---|
5969 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
|
---|
5970 | }
|
---|
5971 | }
|
---|
5972 | else
|
---|
5973 | {
|
---|
5974 | /*Write header block in the IN FIFO without last block */
|
---|
5975 | for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
---|
5976 | {
|
---|
5977 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5978 | hcryp->CrypHeaderCount++ ;
|
---|
5979 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5980 | hcryp->CrypHeaderCount++ ;
|
---|
5981 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5982 | hcryp->CrypHeaderCount++ ;
|
---|
5983 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
5984 | hcryp->CrypHeaderCount++ ;
|
---|
5985 |
|
---|
5986 | /* Wait for IFEM to be raised */
|
---|
5987 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
---|
5988 | do
|
---|
5989 | {
|
---|
5990 | count-- ;
|
---|
5991 | if (count == 0U)
|
---|
5992 | {
|
---|
5993 | /* Disable the CRYP peripheral clock */
|
---|
5994 | __HAL_CRYP_DISABLE(hcryp);
|
---|
5995 |
|
---|
5996 | /* Change state */
|
---|
5997 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
5998 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
5999 |
|
---|
6000 | /* Process unlocked */
|
---|
6001 | __HAL_UNLOCK(hcryp);
|
---|
6002 | return HAL_ERROR;
|
---|
6003 | }
|
---|
6004 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
|
---|
6005 | }
|
---|
6006 | /* Last block optionally pad the data with zeros*/
|
---|
6007 | for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++)
|
---|
6008 | {
|
---|
6009 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6010 | hcryp->CrypHeaderCount++ ;
|
---|
6011 | }
|
---|
6012 | /* If the header size is a multiple of words */
|
---|
6013 | if ((headersize_in_bytes % 4U) == 0U)
|
---|
6014 | {
|
---|
6015 | /* Pad the data with zeros to have a complete block */
|
---|
6016 | while (loopcounter < 4U)
|
---|
6017 | {
|
---|
6018 | hcryp->Instance->DIN = 0x0U;
|
---|
6019 | loopcounter++;
|
---|
6020 | }
|
---|
6021 | }
|
---|
6022 | else
|
---|
6023 | {
|
---|
6024 | /* Enter last bytes, padded with zeroes */
|
---|
6025 | tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6026 | tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
---|
6027 | hcryp->Instance->DIN = tmp;
|
---|
6028 | loopcounter++;
|
---|
6029 | /* Pad the data with zeros to have a complete block */
|
---|
6030 | while (loopcounter < 4U)
|
---|
6031 | {
|
---|
6032 | hcryp->Instance->DIN = 0x0U;
|
---|
6033 | loopcounter++;
|
---|
6034 | }
|
---|
6035 | }
|
---|
6036 | /* Wait for IFEM to be raised */
|
---|
6037 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
---|
6038 | do
|
---|
6039 | {
|
---|
6040 | count-- ;
|
---|
6041 | if (count == 0U)
|
---|
6042 | {
|
---|
6043 | /* Disable the CRYP peripheral clock */
|
---|
6044 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6045 |
|
---|
6046 | /* Change state */
|
---|
6047 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6048 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6049 |
|
---|
6050 | /* Process unlocked */
|
---|
6051 | __HAL_UNLOCK(hcryp);
|
---|
6052 | return HAL_ERROR;
|
---|
6053 | }
|
---|
6054 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM));
|
---|
6055 | }
|
---|
6056 | /* Wait until the complete message has been processed */
|
---|
6057 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
---|
6058 | do
|
---|
6059 | {
|
---|
6060 | count-- ;
|
---|
6061 | if (count == 0U)
|
---|
6062 | {
|
---|
6063 | /* Disable the CRYP peripheral clock */
|
---|
6064 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6065 |
|
---|
6066 | /* Change state */
|
---|
6067 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6068 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6069 |
|
---|
6070 | /* Process unlocked */
|
---|
6071 | __HAL_UNLOCK(hcryp);
|
---|
6072 | return HAL_ERROR;
|
---|
6073 | }
|
---|
6074 | } while (HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY));
|
---|
6075 |
|
---|
6076 | #else /* AES */
|
---|
6077 |
|
---|
6078 | if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
---|
6079 | {
|
---|
6080 | /* Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
|
---|
6081 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
---|
6082 |
|
---|
6083 | /* Select header phase */
|
---|
6084 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
6085 |
|
---|
6086 | /* Enable the CRYP peripheral */
|
---|
6087 | __HAL_CRYP_ENABLE(hcryp);
|
---|
6088 | }
|
---|
6089 | if ((headersize_in_bytes % 16U) == 0U)
|
---|
6090 | {
|
---|
6091 | /* HeaderSize %4, no padding */
|
---|
6092 | for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter += 4U)
|
---|
6093 | {
|
---|
6094 | /* Write the input block in the data input register */
|
---|
6095 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6096 | hcryp->CrypHeaderCount++ ;
|
---|
6097 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6098 | hcryp->CrypHeaderCount++ ;
|
---|
6099 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6100 | hcryp->CrypHeaderCount++ ;
|
---|
6101 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6102 | hcryp->CrypHeaderCount++ ;
|
---|
6103 |
|
---|
6104 | /*Wait on CCF flag*/
|
---|
6105 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
---|
6106 | do
|
---|
6107 | {
|
---|
6108 | count-- ;
|
---|
6109 | if (count == 0U)
|
---|
6110 | {
|
---|
6111 | /* Disable the CRYP peripheral clock */
|
---|
6112 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6113 |
|
---|
6114 | /* Change state */
|
---|
6115 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6116 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6117 |
|
---|
6118 | /* Process unlocked */
|
---|
6119 | __HAL_UNLOCK(hcryp);
|
---|
6120 | return HAL_ERROR;
|
---|
6121 | }
|
---|
6122 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
6123 |
|
---|
6124 | /* Clear CCF flag */
|
---|
6125 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
6126 | }
|
---|
6127 | }
|
---|
6128 | else
|
---|
6129 | {
|
---|
6130 | /*Write header block in the IN FIFO without last block */
|
---|
6131 | for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
---|
6132 | {
|
---|
6133 | /* Write the Input block in the Data Input register */
|
---|
6134 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6135 | hcryp->CrypHeaderCount++ ;
|
---|
6136 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6137 | hcryp->CrypHeaderCount++ ;
|
---|
6138 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6139 | hcryp->CrypHeaderCount++ ;
|
---|
6140 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6141 | hcryp->CrypHeaderCount++ ;
|
---|
6142 |
|
---|
6143 | /*Wait on CCF flag*/
|
---|
6144 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
---|
6145 | do
|
---|
6146 | {
|
---|
6147 | count-- ;
|
---|
6148 | if (count == 0U)
|
---|
6149 | {
|
---|
6150 | /* Disable the CRYP peripheral clock */
|
---|
6151 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6152 |
|
---|
6153 | /* Change state */
|
---|
6154 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6155 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6156 |
|
---|
6157 | /* Process unlocked */
|
---|
6158 | __HAL_UNLOCK(hcryp);
|
---|
6159 | return HAL_ERROR;
|
---|
6160 | }
|
---|
6161 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
6162 |
|
---|
6163 | /* Clear CCF flag */
|
---|
6164 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
6165 | }
|
---|
6166 | /* Last block optionally pad the data with zeros*/
|
---|
6167 | for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes /4U) % 4U)); loopcounter++)
|
---|
6168 | {
|
---|
6169 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6170 | hcryp->CrypHeaderCount++ ;
|
---|
6171 | }
|
---|
6172 | /* If the header size is a multiple of words */
|
---|
6173 | if ((headersize_in_bytes % 4U) == 0U)
|
---|
6174 | {
|
---|
6175 | /* Pad the data with zeros to have a complete block */
|
---|
6176 | while (loopcounter < 4U)
|
---|
6177 | {
|
---|
6178 | hcryp->Instance->DINR = 0x0U;
|
---|
6179 | loopcounter++;
|
---|
6180 | }
|
---|
6181 | }
|
---|
6182 | else
|
---|
6183 | {
|
---|
6184 | /* Enter last bytes, padded with zeroes */
|
---|
6185 | tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6186 | tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
---|
6187 | hcryp->Instance->DINR = tmp;
|
---|
6188 | loopcounter++;
|
---|
6189 | /* Pad the data with zeros to have a complete block */
|
---|
6190 | while (loopcounter < 4U)
|
---|
6191 | {
|
---|
6192 | hcryp->Instance->DINR = 0x0U;
|
---|
6193 | loopcounter++;
|
---|
6194 | }
|
---|
6195 | }
|
---|
6196 | /*Wait on CCF flag*/
|
---|
6197 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
---|
6198 | do
|
---|
6199 | {
|
---|
6200 | count-- ;
|
---|
6201 | if (count == 0U)
|
---|
6202 | {
|
---|
6203 | /* Disable the CRYP peripheral clock */
|
---|
6204 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6205 |
|
---|
6206 | /* Change state */
|
---|
6207 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6208 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6209 |
|
---|
6210 | /* Process unlocked */
|
---|
6211 | __HAL_UNLOCK(hcryp);
|
---|
6212 | return HAL_ERROR;
|
---|
6213 | }
|
---|
6214 | } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
---|
6215 |
|
---|
6216 | /* Clear CCF flag */
|
---|
6217 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
6218 | }
|
---|
6219 | #endif /* End AES or CRYP */
|
---|
6220 | }
|
---|
6221 | else
|
---|
6222 | {
|
---|
6223 | #if defined(AES)
|
---|
6224 | if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
---|
6225 | {
|
---|
6226 | /*Workaround 1: only AES, before re-enabling the IP, datatype can be configured.*/
|
---|
6227 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
---|
6228 |
|
---|
6229 | /* Select header phase */
|
---|
6230 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
---|
6231 |
|
---|
6232 | /* Enable the CRYP peripheral */
|
---|
6233 | __HAL_CRYP_ENABLE(hcryp);
|
---|
6234 | }
|
---|
6235 | #endif /* AES */
|
---|
6236 | }
|
---|
6237 | /* Return function status */
|
---|
6238 | return HAL_OK;
|
---|
6239 | }
|
---|
6240 |
|
---|
6241 | /**
|
---|
6242 | * @brief Sets the header phase in interrupt mode
|
---|
6243 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
6244 | * the configuration information for CRYP module(Header & HeaderSize)
|
---|
6245 | * @retval None
|
---|
6246 | */
|
---|
6247 | static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp)
|
---|
6248 | {
|
---|
6249 | uint32_t loopcounter;
|
---|
6250 | #if defined(AES)
|
---|
6251 | uint32_t lastwordsize;
|
---|
6252 | uint32_t npblb;
|
---|
6253 | #endif
|
---|
6254 | uint32_t headersize_in_bytes;
|
---|
6255 | uint32_t tmp;
|
---|
6256 | uint32_t mask[12] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
---|
6257 | 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
---|
6258 | 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU}; /* 8-bit data type */
|
---|
6259 |
|
---|
6260 | if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
---|
6261 | {
|
---|
6262 | headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
---|
6263 | }
|
---|
6264 | else
|
---|
6265 | {
|
---|
6266 | headersize_in_bytes = hcryp->Init.HeaderSize;
|
---|
6267 | }
|
---|
6268 |
|
---|
6269 | /***************************** Header phase *********************************/
|
---|
6270 |
|
---|
6271 | #if defined(CRYP)
|
---|
6272 | if (headersize_in_bytes <= ((uint32_t)(hcryp->CrypHeaderCount) * 4U))
|
---|
6273 | {
|
---|
6274 | /* Disable interrupts */
|
---|
6275 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
|
---|
6276 |
|
---|
6277 | /* Disable the CRYP peripheral */
|
---|
6278 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6279 |
|
---|
6280 | /* Set the phase */
|
---|
6281 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
6282 |
|
---|
6283 | /* Select payload phase once the header phase is performed */
|
---|
6284 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
---|
6285 |
|
---|
6286 | /* Enable Interrupts */
|
---|
6287 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
|
---|
6288 |
|
---|
6289 | /* Enable the CRYP peripheral */
|
---|
6290 | __HAL_CRYP_ENABLE(hcryp);
|
---|
6291 | }
|
---|
6292 | else if (((headersize_in_bytes / 4U) - (hcryp->CrypHeaderCount)) >= 4U)
|
---|
6293 |
|
---|
6294 | {
|
---|
6295 | /* HeaderSize %4, no padding */
|
---|
6296 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6297 | hcryp->CrypHeaderCount++ ;
|
---|
6298 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6299 | hcryp->CrypHeaderCount++ ;
|
---|
6300 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6301 | hcryp->CrypHeaderCount++ ;
|
---|
6302 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6303 | hcryp->CrypHeaderCount++ ;
|
---|
6304 | }
|
---|
6305 | else
|
---|
6306 | {
|
---|
6307 | /* Last block optionally pad the data with zeros*/
|
---|
6308 | for (loopcounter = 0U; loopcounter < ((headersize_in_bytes / 4U) % 4U); loopcounter++)
|
---|
6309 | {
|
---|
6310 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6311 | hcryp->CrypHeaderCount++ ;
|
---|
6312 | }
|
---|
6313 | if ((headersize_in_bytes % 4U) == 0U)
|
---|
6314 | {
|
---|
6315 | /* Pad the data with zeros to have a complete block */
|
---|
6316 | while (loopcounter < 4U)
|
---|
6317 | {
|
---|
6318 | hcryp->Instance->DIN = 0x0U;
|
---|
6319 | loopcounter++;
|
---|
6320 | hcryp->CrypHeaderCount++;
|
---|
6321 | }
|
---|
6322 | }
|
---|
6323 | else
|
---|
6324 | {
|
---|
6325 | /* Enter last bytes, padded with zeros */
|
---|
6326 | tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6327 | tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
---|
6328 | hcryp->Instance->DIN = tmp;
|
---|
6329 | loopcounter++;
|
---|
6330 | hcryp->CrypHeaderCount++;
|
---|
6331 | /* Pad the data with zeros to have a complete block */
|
---|
6332 | while (loopcounter < 4U)
|
---|
6333 | {
|
---|
6334 | hcryp->Instance->DIN = 0x0U;
|
---|
6335 | loopcounter++;
|
---|
6336 | hcryp->CrypHeaderCount++;
|
---|
6337 | }
|
---|
6338 | }
|
---|
6339 | }
|
---|
6340 | #else /* AES */
|
---|
6341 |
|
---|
6342 | if (headersize_in_bytes <= ((uint32_t)(hcryp->CrypHeaderCount) * 4U))
|
---|
6343 | {
|
---|
6344 | /* Set the phase */
|
---|
6345 | hcryp->Phase = CRYP_PHASE_PROCESS;
|
---|
6346 |
|
---|
6347 | /* Payload phase not supported in CCM AES2 */
|
---|
6348 | if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)
|
---|
6349 | {
|
---|
6350 | /* Select payload phase once the header phase is performed */
|
---|
6351 | MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
|
---|
6352 | }
|
---|
6353 | if (hcryp->Init.Algorithm == CRYP_AES_CCM)
|
---|
6354 | {
|
---|
6355 | /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
|
---|
6356 | hcryp->CrypHeaderCount++;
|
---|
6357 | }
|
---|
6358 | /* Write the payload Input block in the IN FIFO */
|
---|
6359 | if (hcryp->Size == 0U)
|
---|
6360 | {
|
---|
6361 | /* Disable interrupts */
|
---|
6362 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
---|
6363 |
|
---|
6364 | /* Change the CRYP state */
|
---|
6365 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6366 |
|
---|
6367 | /* Process unlocked */
|
---|
6368 | __HAL_UNLOCK(hcryp);
|
---|
6369 | }
|
---|
6370 | else if (hcryp->Size >= 16U)
|
---|
6371 | {
|
---|
6372 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
6373 | hcryp->CrypInCount++;
|
---|
6374 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
6375 | hcryp->CrypInCount++;
|
---|
6376 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
6377 | hcryp->CrypInCount++;
|
---|
6378 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
6379 | hcryp->CrypInCount++;
|
---|
6380 |
|
---|
6381 | if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
---|
6382 | {
|
---|
6383 | /* Call the input data transfer complete callback */
|
---|
6384 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
6385 | /*Call registered Input complete callback*/
|
---|
6386 | hcryp->InCpltCallback(hcryp);
|
---|
6387 | #else
|
---|
6388 | /*Call legacy weak Input complete callback*/
|
---|
6389 | HAL_CRYP_InCpltCallback(hcryp);
|
---|
6390 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
6391 | }
|
---|
6392 | }
|
---|
6393 | else /* Size < 4 words : first block is the last block*/
|
---|
6394 | {
|
---|
6395 | /* Workaround not implemented, Size should be %4 otherwise Tag will be incorrectly
|
---|
6396 | generated for GCM Encryption. Workaround is implemented in polling mode, so if last block of
|
---|
6397 | payload <128bit don't use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
|
---|
6398 |
|
---|
6399 | /* Compute the number of padding bytes in last block of payload */
|
---|
6400 | npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
---|
6401 |
|
---|
6402 | /* Number of valid words (lastwordsize) in last block */
|
---|
6403 | if ((npblb % 4U) == 0U)
|
---|
6404 | {
|
---|
6405 | lastwordsize = (16U - npblb) / 4U;
|
---|
6406 | }
|
---|
6407 | else
|
---|
6408 | {
|
---|
6409 | lastwordsize = ((16U - npblb) / 4U) + 1U;
|
---|
6410 | }
|
---|
6411 |
|
---|
6412 | /* Last block optionally pad the data with zeros*/
|
---|
6413 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
---|
6414 | {
|
---|
6415 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
6416 | hcryp->CrypInCount++;
|
---|
6417 | }
|
---|
6418 | while (loopcounter < 4U)
|
---|
6419 | {
|
---|
6420 | /* Pad the data with zeros to have a complete block */
|
---|
6421 | hcryp->Instance->DINR = 0x0U;
|
---|
6422 | loopcounter++;
|
---|
6423 | }
|
---|
6424 | }
|
---|
6425 | }
|
---|
6426 | else if (((headersize_in_bytes / 4U) - (hcryp->CrypHeaderCount)) >= 4U)
|
---|
6427 | {
|
---|
6428 | /* Write the input block in the IN FIFO */
|
---|
6429 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6430 | hcryp->CrypHeaderCount++;
|
---|
6431 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6432 | hcryp->CrypHeaderCount++;
|
---|
6433 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6434 | hcryp->CrypHeaderCount++;
|
---|
6435 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6436 | hcryp->CrypHeaderCount++;
|
---|
6437 | }
|
---|
6438 | else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/
|
---|
6439 | {
|
---|
6440 | /* Last block optionally pad the data with zeros*/
|
---|
6441 | for (loopcounter = 0U; loopcounter < ((headersize_in_bytes / 4U) % 4U); loopcounter++)
|
---|
6442 | {
|
---|
6443 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6444 | hcryp->CrypHeaderCount++ ;
|
---|
6445 | }
|
---|
6446 | /* If the header size is a multiple of words */
|
---|
6447 | if ((headersize_in_bytes % 4U) == 0U)
|
---|
6448 | {
|
---|
6449 | /* Pad the data with zeros to have a complete block */
|
---|
6450 | while (loopcounter < 4U)
|
---|
6451 | {
|
---|
6452 | hcryp->Instance->DINR = 0x0U;
|
---|
6453 | loopcounter++;
|
---|
6454 | hcryp->CrypHeaderCount++;
|
---|
6455 | }
|
---|
6456 | }
|
---|
6457 | else
|
---|
6458 | {
|
---|
6459 | /* Enter last bytes, padded with zeros */
|
---|
6460 | tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
---|
6461 | tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
---|
6462 | hcryp->Instance->DINR = tmp;
|
---|
6463 | loopcounter++;
|
---|
6464 | hcryp->CrypHeaderCount++;
|
---|
6465 | /* Pad the data with zeros to have a complete block */
|
---|
6466 | while (loopcounter < 4U)
|
---|
6467 | {
|
---|
6468 | hcryp->Instance->DINR = 0x0U;
|
---|
6469 | loopcounter++;
|
---|
6470 | hcryp->CrypHeaderCount++;
|
---|
6471 | }
|
---|
6472 | }
|
---|
6473 | }
|
---|
6474 | #endif /* End AES or CRYP */
|
---|
6475 | }
|
---|
6476 |
|
---|
6477 |
|
---|
6478 | /**
|
---|
6479 | * @brief Workaround used for GCM/CCM mode.
|
---|
6480 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
6481 | * the configuration information for CRYP module
|
---|
6482 | * @param Timeout: specify Timeout value
|
---|
6483 | * @retval None
|
---|
6484 | */
|
---|
6485 | static void CRYP_Workaround(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
6486 | {
|
---|
6487 | uint32_t lastwordsize;
|
---|
6488 | uint32_t npblb;
|
---|
6489 | #if defined(CRYP)
|
---|
6490 | uint32_t iv1temp;
|
---|
6491 | uint32_t temp[4] = {0};
|
---|
6492 | uint32_t temp2[4] = {0};
|
---|
6493 | #endif /* CRYP */
|
---|
6494 | uint32_t intermediate_data[4] = {0};
|
---|
6495 | uint32_t index;
|
---|
6496 |
|
---|
6497 | /* Compute the number of padding bytes in last block of payload */
|
---|
6498 | npblb = ((((uint32_t)(hcryp->Size) / 16U) + 1U) * 16U) - (uint32_t)(hcryp->Size);
|
---|
6499 |
|
---|
6500 | /* Number of valid words (lastwordsize) in last block */
|
---|
6501 | if ((npblb % 4U) == 0U)
|
---|
6502 | {
|
---|
6503 | lastwordsize = (16U - npblb) / 4U;
|
---|
6504 | }
|
---|
6505 | else
|
---|
6506 | {
|
---|
6507 | lastwordsize = ((16U - npblb) / 4U) + 1U;
|
---|
6508 | }
|
---|
6509 |
|
---|
6510 | #if defined(CRYP)
|
---|
6511 |
|
---|
6512 | /* Workaround 2, case GCM encryption */
|
---|
6513 | if (hcryp->Init.Algorithm == CRYP_AES_GCM)
|
---|
6514 | {
|
---|
6515 | if ((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_ENCRYPT)
|
---|
6516 | {
|
---|
6517 | /*Workaround in order to properly compute authentication tags while doing
|
---|
6518 | a GCM encryption with the last block of payload size inferior to 128 bits*/
|
---|
6519 | /* Disable CRYP to start the final phase */
|
---|
6520 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6521 |
|
---|
6522 | /*Update CRYP_IV1R register and ALGOMODE*/
|
---|
6523 | hcryp->Instance->IV1RR = ((hcryp->Instance->CSGCMCCM7R) - 1U);
|
---|
6524 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CTR);
|
---|
6525 |
|
---|
6526 | /* Enable CRYP to start the final phase */
|
---|
6527 | __HAL_CRYP_ENABLE(hcryp);
|
---|
6528 | }
|
---|
6529 | /* Last block optionally pad the data with zeros*/
|
---|
6530 | for (index = 0; index < lastwordsize; index ++)
|
---|
6531 | {
|
---|
6532 | /* Write the last input block in the IN FIFO */
|
---|
6533 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
6534 | hcryp->CrypInCount++;
|
---|
6535 | }
|
---|
6536 | while (index < 4U)
|
---|
6537 | {
|
---|
6538 | /* Pad the data with zeros to have a complete block */
|
---|
6539 | hcryp->Instance->DIN = 0U;
|
---|
6540 | index++;
|
---|
6541 | }
|
---|
6542 | /* Wait for OFNE flag to be raised */
|
---|
6543 | if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
---|
6544 | {
|
---|
6545 | /* Disable the CRYP peripheral clock */
|
---|
6546 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6547 |
|
---|
6548 | /* Change state */
|
---|
6549 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6550 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6551 |
|
---|
6552 | /* Process Unlocked */
|
---|
6553 | __HAL_UNLOCK(hcryp);
|
---|
6554 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
6555 | /*Call registered error callback*/
|
---|
6556 | hcryp->ErrorCallback(hcryp);
|
---|
6557 | #else
|
---|
6558 | /*Call legacy weak error callback*/
|
---|
6559 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
6560 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
6561 | }
|
---|
6562 | if ((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U)
|
---|
6563 | {
|
---|
6564 | for (index = 0U; index < 4U; index++)
|
---|
6565 | {
|
---|
6566 | /* Read the output block from the output FIFO */
|
---|
6567 | intermediate_data[index] = hcryp->Instance->DOUT;
|
---|
6568 |
|
---|
6569 | /* Intermediate data buffer to be used in for the workaround*/
|
---|
6570 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = intermediate_data[index];
|
---|
6571 | hcryp->CrypOutCount++;
|
---|
6572 | }
|
---|
6573 | }
|
---|
6574 |
|
---|
6575 | if ((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_ENCRYPT)
|
---|
6576 | {
|
---|
6577 | /*workaround in order to properly compute authentication tags while doing
|
---|
6578 | a GCM encryption with the last block of payload size inferior to 128 bits*/
|
---|
6579 | /* Change the AES mode to GCM mode and Select Final phase */
|
---|
6580 | /* configured CHMOD GCM */
|
---|
6581 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_GCM);
|
---|
6582 |
|
---|
6583 | /* configured final phase */
|
---|
6584 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_GCM_CCMPH, CRYP_PHASE_FINAL);
|
---|
6585 |
|
---|
6586 | if ((hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_32B)
|
---|
6587 | {
|
---|
6588 | if ((npblb % 4U) == 1U)
|
---|
6589 | {
|
---|
6590 | intermediate_data[lastwordsize - 1U] &= 0xFFFFFF00U;
|
---|
6591 | }
|
---|
6592 | if ((npblb % 4U) == 2U)
|
---|
6593 | {
|
---|
6594 | intermediate_data[lastwordsize - 1U] &= 0xFFFF0000U;
|
---|
6595 | }
|
---|
6596 | if ((npblb % 4U) == 3U)
|
---|
6597 | {
|
---|
6598 | intermediate_data[lastwordsize - 1U] &= 0xFF000000U;
|
---|
6599 | }
|
---|
6600 | }
|
---|
6601 | else if ((hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_8B)
|
---|
6602 | {
|
---|
6603 | if ((npblb % 4U) == 1U)
|
---|
6604 | {
|
---|
6605 | intermediate_data[lastwordsize - 1U] &= __REV(0xFFFFFF00U);
|
---|
6606 | }
|
---|
6607 | if ((npblb % 4U) == 2U)
|
---|
6608 | {
|
---|
6609 | intermediate_data[lastwordsize - 1U] &= __REV(0xFFFF0000U);
|
---|
6610 | }
|
---|
6611 | if ((npblb % 4U) == 3U)
|
---|
6612 | {
|
---|
6613 | intermediate_data[lastwordsize - 1U] &= __REV(0xFF000000U);
|
---|
6614 | }
|
---|
6615 | }
|
---|
6616 | else if ((hcryp->Instance->CR & CRYP_CR_DATATYPE) == CRYP_DATATYPE_16B)
|
---|
6617 | {
|
---|
6618 | if ((npblb % 4U) == 1U)
|
---|
6619 | {
|
---|
6620 | intermediate_data[lastwordsize - 1U] &= __ROR((0xFFFFFF00U), 16);
|
---|
6621 | }
|
---|
6622 | if ((npblb % 4U) == 2U)
|
---|
6623 | {
|
---|
6624 | intermediate_data[lastwordsize - 1U] &= __ROR((0xFFFF0000U), 16);
|
---|
6625 | }
|
---|
6626 | if ((npblb % 4U) == 3U)
|
---|
6627 | {
|
---|
6628 | intermediate_data[lastwordsize - 1U] &= __ROR((0xFF000000U), 16);
|
---|
6629 | }
|
---|
6630 | }
|
---|
6631 | else /*CRYP_DATATYPE_1B*/
|
---|
6632 | {
|
---|
6633 | if ((npblb % 4U) == 1U)
|
---|
6634 | {
|
---|
6635 | intermediate_data[lastwordsize - 1U] &= __RBIT(0xFFFFFF00U);
|
---|
6636 | }
|
---|
6637 | if ((npblb % 4U) == 2U)
|
---|
6638 | {
|
---|
6639 | intermediate_data[lastwordsize - 1U] &= __RBIT(0xFFFF0000U);
|
---|
6640 | }
|
---|
6641 | if ((npblb % 4U) == 3U)
|
---|
6642 | {
|
---|
6643 | intermediate_data[lastwordsize - 1U] &= __RBIT(0xFF000000U);
|
---|
6644 | }
|
---|
6645 | }
|
---|
6646 | for (index = 0U; index < lastwordsize; index ++)
|
---|
6647 | {
|
---|
6648 | /*Write the intermediate_data in the IN FIFO */
|
---|
6649 | hcryp->Instance->DIN = intermediate_data[index];
|
---|
6650 | }
|
---|
6651 | while (index < 4U)
|
---|
6652 | {
|
---|
6653 | /* Pad the data with zeros to have a complete block */
|
---|
6654 | hcryp->Instance->DIN = 0x0U;
|
---|
6655 | index++;
|
---|
6656 | }
|
---|
6657 | /* Wait for OFNE flag to be raised */
|
---|
6658 | if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
---|
6659 | {
|
---|
6660 | /* Disable the CRYP peripheral clock */
|
---|
6661 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6662 |
|
---|
6663 | /* Change state */
|
---|
6664 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6665 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6666 |
|
---|
6667 | /* Process unlocked */
|
---|
6668 | __HAL_UNLOCK(hcryp);
|
---|
6669 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
---|
6670 | /*Call registered error callback*/
|
---|
6671 | hcryp->ErrorCallback(hcryp);
|
---|
6672 | #else
|
---|
6673 | /*Call legacy weak error callback*/
|
---|
6674 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
6675 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
6676 | }
|
---|
6677 |
|
---|
6678 | if ((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U)
|
---|
6679 | {
|
---|
6680 | for (index = 0U; index < 4U; index++)
|
---|
6681 | {
|
---|
6682 | intermediate_data[index] = hcryp->Instance->DOUT;
|
---|
6683 | }
|
---|
6684 | }
|
---|
6685 | }
|
---|
6686 | } /* End of GCM encryption */
|
---|
6687 | else
|
---|
6688 | {
|
---|
6689 | /* Workaround 2, case CCM decryption, in order to properly compute
|
---|
6690 | authentication tags while doing a CCM decryption with the last block
|
---|
6691 | of payload size inferior to 128 bits*/
|
---|
6692 |
|
---|
6693 | if ((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_DECRYPT)
|
---|
6694 | {
|
---|
6695 | iv1temp = hcryp->Instance->CSGCMCCM7R;
|
---|
6696 |
|
---|
6697 | /* Disable CRYP to start the final phase */
|
---|
6698 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6699 |
|
---|
6700 | temp[0] = hcryp->Instance->CSGCMCCM0R;
|
---|
6701 | temp[1] = hcryp->Instance->CSGCMCCM1R;
|
---|
6702 | temp[2] = hcryp->Instance->CSGCMCCM2R;
|
---|
6703 | temp[3] = hcryp->Instance->CSGCMCCM3R;
|
---|
6704 |
|
---|
6705 | hcryp->Instance->IV1RR = iv1temp;
|
---|
6706 |
|
---|
6707 | /* Configured CHMOD CTR */
|
---|
6708 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CTR);
|
---|
6709 |
|
---|
6710 | /* Enable CRYP to start the final phase */
|
---|
6711 | __HAL_CRYP_ENABLE(hcryp);
|
---|
6712 | }
|
---|
6713 | /* Last block optionally pad the data with zeros*/
|
---|
6714 | for (index = 0; index < lastwordsize; index ++)
|
---|
6715 | {
|
---|
6716 | /* Write the last Input block in the IN FIFO */
|
---|
6717 | hcryp->Instance->DIN = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
6718 | hcryp->CrypInCount++;
|
---|
6719 | }
|
---|
6720 | while (index < 4U)
|
---|
6721 | {
|
---|
6722 | /* Pad the data with zeros to have a complete block */
|
---|
6723 | hcryp->Instance->DIN = 0U;
|
---|
6724 | index++;
|
---|
6725 | }
|
---|
6726 | /* Wait for OFNE flag to be raised */
|
---|
6727 | if (CRYP_WaitOnOFNEFlag(hcryp, Timeout) != HAL_OK)
|
---|
6728 | {
|
---|
6729 | /* Disable the CRYP peripheral clock */
|
---|
6730 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6731 |
|
---|
6732 | /* Change state */
|
---|
6733 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6734 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6735 |
|
---|
6736 | /* Process Unlocked */
|
---|
6737 | __HAL_UNLOCK(hcryp);
|
---|
6738 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
---|
6739 | /*Call registered error callback*/
|
---|
6740 | hcryp->ErrorCallback(hcryp);
|
---|
6741 | #else
|
---|
6742 | /*Call legacy weak error callback*/
|
---|
6743 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
6744 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
6745 | }
|
---|
6746 |
|
---|
6747 | if ((hcryp->Instance->SR & CRYP_FLAG_OFNE) != 0x0U)
|
---|
6748 | {
|
---|
6749 | for (index = 0U; index < 4U; index++)
|
---|
6750 | {
|
---|
6751 | /* Read the Output block from the Output FIFO */
|
---|
6752 | intermediate_data[index] = hcryp->Instance->DOUT;
|
---|
6753 |
|
---|
6754 | /*intermediate data buffer to be used in for the workaround*/
|
---|
6755 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = intermediate_data[index];
|
---|
6756 | hcryp->CrypOutCount++;
|
---|
6757 | }
|
---|
6758 | }
|
---|
6759 |
|
---|
6760 | if ((hcryp->Instance->CR & CRYP_CR_ALGODIR) == CRYP_OPERATINGMODE_DECRYPT)
|
---|
6761 | {
|
---|
6762 | temp2[0] = hcryp->Instance->CSGCMCCM0R;
|
---|
6763 | temp2[1] = hcryp->Instance->CSGCMCCM1R;
|
---|
6764 | temp2[2] = hcryp->Instance->CSGCMCCM2R;
|
---|
6765 | temp2[3] = hcryp->Instance->CSGCMCCM3R;
|
---|
6766 |
|
---|
6767 | /* configured CHMOD CCM */
|
---|
6768 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_ALGOMODE, CRYP_AES_CCM);
|
---|
6769 |
|
---|
6770 | /* configured Header phase */
|
---|
6771 | MODIFY_REG(hcryp->Instance->CR, CRYP_CR_GCM_CCMPH, CRYP_PHASE_HEADER);
|
---|
6772 |
|
---|
6773 | /*set to zero the bits corresponding to the padded bits*/
|
---|
6774 | for (index = lastwordsize; index < 4U; index ++)
|
---|
6775 | {
|
---|
6776 | intermediate_data[index] = 0U;
|
---|
6777 | }
|
---|
6778 | if ((npblb % 4U) == 1U)
|
---|
6779 | {
|
---|
6780 | intermediate_data[lastwordsize - 1U] &= 0xFFFFFF00U;
|
---|
6781 | }
|
---|
6782 | if ((npblb % 4U) == 2U)
|
---|
6783 | {
|
---|
6784 | intermediate_data[lastwordsize - 1U] &= 0xFFFF0000U;
|
---|
6785 | }
|
---|
6786 | if ((npblb % 4U) == 3U)
|
---|
6787 | {
|
---|
6788 | intermediate_data[lastwordsize - 1U] &= 0xFF000000U;
|
---|
6789 | }
|
---|
6790 | for (index = 0U; index < 4U ; index ++)
|
---|
6791 | {
|
---|
6792 | intermediate_data[index] ^= temp[index];
|
---|
6793 | intermediate_data[index] ^= temp2[index];
|
---|
6794 | }
|
---|
6795 | for (index = 0U; index < 4U; index ++)
|
---|
6796 | {
|
---|
6797 | /* Write the last Input block in the IN FIFO */
|
---|
6798 | hcryp->Instance->DIN = intermediate_data[index] ;
|
---|
6799 | }
|
---|
6800 |
|
---|
6801 | /* Wait for BUSY flag to be raised */
|
---|
6802 | if (CRYP_WaitOnBUSYFlag(hcryp, Timeout) != HAL_OK)
|
---|
6803 | {
|
---|
6804 | /* Disable the CRYP peripheral clock */
|
---|
6805 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6806 |
|
---|
6807 | /* Change state */
|
---|
6808 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6809 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6810 |
|
---|
6811 | /* Process Unlocked */
|
---|
6812 | __HAL_UNLOCK(hcryp);
|
---|
6813 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
---|
6814 | /*Call registered error callback*/
|
---|
6815 | hcryp->ErrorCallback(hcryp);
|
---|
6816 | #else
|
---|
6817 | /*Call legacy weak error callback*/
|
---|
6818 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
6819 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
6820 | }
|
---|
6821 | }
|
---|
6822 | } /* End of CCM WKA*/
|
---|
6823 |
|
---|
6824 | /* Process Unlocked */
|
---|
6825 | __HAL_UNLOCK(hcryp);
|
---|
6826 |
|
---|
6827 | #else /* AES */
|
---|
6828 |
|
---|
6829 | /*Workaround 2: case GCM encryption, during payload phase and before inserting
|
---|
6830 | the last block of paylaod, which size is inferior to 128 bits */
|
---|
6831 |
|
---|
6832 | if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
|
---|
6833 | {
|
---|
6834 | /* configured CHMOD CTR */
|
---|
6835 | MODIFY_REG(hcryp->Instance->CR, AES_CR_CHMOD, CRYP_AES_CTR);
|
---|
6836 | }
|
---|
6837 | /* last block optionally pad the data with zeros*/
|
---|
6838 | for (index = 0U; index < lastwordsize; index ++)
|
---|
6839 | {
|
---|
6840 | /* Write the last Input block in the IN FIFO */
|
---|
6841 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
---|
6842 | hcryp->CrypInCount++;
|
---|
6843 | }
|
---|
6844 | while (index < 4U)
|
---|
6845 | {
|
---|
6846 | /* pad the data with zeros to have a complete block */
|
---|
6847 | hcryp->Instance->DINR = 0U;
|
---|
6848 | index++;
|
---|
6849 | }
|
---|
6850 | /* Wait for CCF flag to be raised */
|
---|
6851 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
6852 | {
|
---|
6853 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6854 | __HAL_UNLOCK(hcryp);
|
---|
6855 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
---|
6856 | /*Call registered error callback*/
|
---|
6857 | hcryp->ErrorCallback(hcryp);
|
---|
6858 | #else
|
---|
6859 | /*Call legacy weak error callback*/
|
---|
6860 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
6861 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
6862 | }
|
---|
6863 |
|
---|
6864 | /* Clear CCF Flag */
|
---|
6865 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
6866 |
|
---|
6867 | for (index = 0U; index < 4U; index++)
|
---|
6868 | {
|
---|
6869 | /* Read the Output block from the Output FIFO */
|
---|
6870 | intermediate_data[index] = hcryp->Instance->DOUTR;
|
---|
6871 |
|
---|
6872 | /*intermediate data buffer to be used in the workaround*/
|
---|
6873 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = intermediate_data[index];
|
---|
6874 | hcryp->CrypOutCount++;
|
---|
6875 | }
|
---|
6876 |
|
---|
6877 | if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
|
---|
6878 | {
|
---|
6879 | /* configured CHMOD GCM */
|
---|
6880 | MODIFY_REG(hcryp->Instance->CR, AES_CR_CHMOD, CRYP_AES_GCM_GMAC);
|
---|
6881 |
|
---|
6882 | /* Select final phase */
|
---|
6883 | MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_FINAL);
|
---|
6884 |
|
---|
6885 | if ((hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_32B)
|
---|
6886 | {
|
---|
6887 | if ((npblb % 4U) == 1U)
|
---|
6888 | {
|
---|
6889 | intermediate_data[lastwordsize - 1U] &= 0xFFFFFF00U;
|
---|
6890 | }
|
---|
6891 | if ((npblb % 4U) == 2U)
|
---|
6892 | {
|
---|
6893 | intermediate_data[lastwordsize - 1U] &= 0xFFFF0000U;
|
---|
6894 | }
|
---|
6895 | if ((npblb % 4U) == 3U)
|
---|
6896 | {
|
---|
6897 | intermediate_data[lastwordsize - 1U] &= 0xFF000000U;
|
---|
6898 | }
|
---|
6899 | }
|
---|
6900 | else if ((hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_8B)
|
---|
6901 | {
|
---|
6902 | if ((npblb % 4U) == 1U)
|
---|
6903 | {
|
---|
6904 | intermediate_data[lastwordsize - 1U] &= __REV(0xFFFFFF00U);
|
---|
6905 | }
|
---|
6906 | if ((npblb % 4U) == 2U)
|
---|
6907 | {
|
---|
6908 | intermediate_data[lastwordsize - 1U] &= __REV(0xFFFF0000U);
|
---|
6909 | }
|
---|
6910 | if ((npblb % 4U) == 3U)
|
---|
6911 | {
|
---|
6912 | intermediate_data[lastwordsize - 1U] &= __REV(0xFF000000U);
|
---|
6913 | }
|
---|
6914 | }
|
---|
6915 | else if ((hcryp->Instance->CR & AES_CR_DATATYPE) == CRYP_DATATYPE_16B)
|
---|
6916 | {
|
---|
6917 | if ((npblb % 4U) == 1U)
|
---|
6918 | {
|
---|
6919 | intermediate_data[lastwordsize - 1U] &= __ROR((0xFFFFFF00U), 16);
|
---|
6920 | }
|
---|
6921 | if ((npblb % 4U) == 2U)
|
---|
6922 | {
|
---|
6923 | intermediate_data[lastwordsize - 1U] &= __ROR((0xFFFF0000U), 16);
|
---|
6924 | }
|
---|
6925 | if ((npblb % 4U) == 3U)
|
---|
6926 | {
|
---|
6927 | intermediate_data[lastwordsize - 1U] &= __ROR((0xFF000000U), 16);
|
---|
6928 | }
|
---|
6929 | }
|
---|
6930 | else /*CRYP_DATATYPE_1B*/
|
---|
6931 | {
|
---|
6932 | if ((npblb % 4U) == 1U)
|
---|
6933 | {
|
---|
6934 | intermediate_data[lastwordsize - 1U] &= __RBIT(0xFFFFFF00U);
|
---|
6935 | }
|
---|
6936 | if ((npblb % 4U) == 2U)
|
---|
6937 | {
|
---|
6938 | intermediate_data[lastwordsize - 1U] &= __RBIT(0xFFFF0000U);
|
---|
6939 | }
|
---|
6940 | if ((npblb % 4U) == 3U)
|
---|
6941 | {
|
---|
6942 | intermediate_data[lastwordsize - 1U] &= __RBIT(0xFF000000U);
|
---|
6943 | }
|
---|
6944 | }
|
---|
6945 |
|
---|
6946 | /*Write the intermediate_data in the IN FIFO */
|
---|
6947 | for (index = 0U; index < lastwordsize; index ++)
|
---|
6948 | {
|
---|
6949 | hcryp->Instance->DINR = intermediate_data[index];
|
---|
6950 | }
|
---|
6951 | while (index < 4U)
|
---|
6952 | {
|
---|
6953 | /* pad the data with zeros to have a complete block */
|
---|
6954 | hcryp->Instance->DINR = 0U;
|
---|
6955 | index++;
|
---|
6956 | }
|
---|
6957 | /* Wait for CCF flag to be raised */
|
---|
6958 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
---|
6959 | {
|
---|
6960 | /* Disable the CRYP peripheral clock */
|
---|
6961 | __HAL_CRYP_DISABLE(hcryp);
|
---|
6962 |
|
---|
6963 | /* Change state */
|
---|
6964 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
---|
6965 | hcryp->State = HAL_CRYP_STATE_READY;
|
---|
6966 |
|
---|
6967 | /* Process Unlocked */
|
---|
6968 | __HAL_UNLOCK(hcryp);
|
---|
6969 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
---|
6970 | /*Call registered error callback*/
|
---|
6971 | hcryp->ErrorCallback(hcryp);
|
---|
6972 | #else
|
---|
6973 | /*Call legacy weak error callback*/
|
---|
6974 | HAL_CRYP_ErrorCallback(hcryp);
|
---|
6975 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
---|
6976 | }
|
---|
6977 | /* Clear CCF Flag */
|
---|
6978 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
---|
6979 |
|
---|
6980 | for (index = 0U; index < 4U; index++)
|
---|
6981 | {
|
---|
6982 | intermediate_data[index] = hcryp->Instance->DOUTR;
|
---|
6983 | }
|
---|
6984 | }/*End of Workaround 2*/
|
---|
6985 | #endif /* End AES or CRYP */
|
---|
6986 | }
|
---|
6987 | #endif /* AES or GCM CCM defined*/
|
---|
6988 | #if defined (CRYP)
|
---|
6989 | #if defined (CRYP_CR_ALGOMODE_AES_GCM)
|
---|
6990 | /**
|
---|
6991 | * @brief Handle CRYP hardware block Timeout when waiting for IFEM flag to be raised.
|
---|
6992 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
6993 | * the configuration information for CRYP module.
|
---|
6994 | * @param Timeout: Timeout duration.
|
---|
6995 | * @retval HAL status
|
---|
6996 | */
|
---|
6997 | static HAL_StatusTypeDef CRYP_WaitOnIFEMFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
6998 | {
|
---|
6999 | uint32_t tickstart;
|
---|
7000 |
|
---|
7001 | /* Get timeout */
|
---|
7002 | tickstart = HAL_GetTick();
|
---|
7003 |
|
---|
7004 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
|
---|
7005 | {
|
---|
7006 | /* Check for the Timeout */
|
---|
7007 | if (Timeout != HAL_MAX_DELAY)
|
---|
7008 | {
|
---|
7009 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
7010 | {
|
---|
7011 | return HAL_ERROR;
|
---|
7012 | }
|
---|
7013 | }
|
---|
7014 | }
|
---|
7015 | return HAL_OK;
|
---|
7016 | }
|
---|
7017 | #endif /* GCM CCM defined*/
|
---|
7018 | /**
|
---|
7019 | * @brief Handle CRYP hardware block Timeout when waiting for BUSY flag to be raised.
|
---|
7020 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
7021 | * the configuration information for CRYP module.
|
---|
7022 | * @param Timeout: Timeout duration.
|
---|
7023 | * @retval HAL status
|
---|
7024 | */
|
---|
7025 | static HAL_StatusTypeDef CRYP_WaitOnBUSYFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
7026 | {
|
---|
7027 | uint32_t tickstart;
|
---|
7028 |
|
---|
7029 | /* Get timeout */
|
---|
7030 | tickstart = HAL_GetTick();
|
---|
7031 |
|
---|
7032 | while (HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY))
|
---|
7033 | {
|
---|
7034 | /* Check for the Timeout */
|
---|
7035 | if (Timeout != HAL_MAX_DELAY)
|
---|
7036 | {
|
---|
7037 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
7038 | {
|
---|
7039 | return HAL_ERROR;
|
---|
7040 | }
|
---|
7041 | }
|
---|
7042 | }
|
---|
7043 | return HAL_OK;
|
---|
7044 | }
|
---|
7045 |
|
---|
7046 |
|
---|
7047 | /**
|
---|
7048 | * @brief Handle CRYP hardware block Timeout when waiting for OFNE flag to be raised.
|
---|
7049 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
7050 | * the configuration information for CRYP module.
|
---|
7051 | * @param Timeout: Timeout duration.
|
---|
7052 | * @retval HAL status
|
---|
7053 | */
|
---|
7054 | static HAL_StatusTypeDef CRYP_WaitOnOFNEFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
7055 | {
|
---|
7056 | uint32_t tickstart;
|
---|
7057 |
|
---|
7058 | /* Get timeout */
|
---|
7059 | tickstart = HAL_GetTick();
|
---|
7060 |
|
---|
7061 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
|
---|
7062 | {
|
---|
7063 | /* Check for the Timeout */
|
---|
7064 | if (Timeout != HAL_MAX_DELAY)
|
---|
7065 | {
|
---|
7066 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
7067 | {
|
---|
7068 | return HAL_ERROR;
|
---|
7069 | }
|
---|
7070 | }
|
---|
7071 | }
|
---|
7072 | return HAL_OK;
|
---|
7073 | }
|
---|
7074 |
|
---|
7075 | #else /* AES */
|
---|
7076 |
|
---|
7077 | /**
|
---|
7078 | * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
|
---|
7079 | * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
|
---|
7080 | * the configuration information for CRYP module.
|
---|
7081 | * @param Timeout: Timeout duration.
|
---|
7082 | * @retval HAL status
|
---|
7083 | */
|
---|
7084 | static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
---|
7085 | {
|
---|
7086 | uint32_t tickstart;
|
---|
7087 |
|
---|
7088 | /* Get timeout */
|
---|
7089 | tickstart = HAL_GetTick();
|
---|
7090 |
|
---|
7091 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
|
---|
7092 | {
|
---|
7093 | /* Check for the Timeout */
|
---|
7094 | if (Timeout != HAL_MAX_DELAY)
|
---|
7095 | {
|
---|
7096 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
---|
7097 | {
|
---|
7098 | return HAL_ERROR;
|
---|
7099 | }
|
---|
7100 | }
|
---|
7101 | }
|
---|
7102 | return HAL_OK;
|
---|
7103 | }
|
---|
7104 |
|
---|
7105 | #endif /* End AES or CRYP */
|
---|
7106 |
|
---|
7107 |
|
---|
7108 | /**
|
---|
7109 | * @}
|
---|
7110 | */
|
---|
7111 |
|
---|
7112 |
|
---|
7113 |
|
---|
7114 | /**
|
---|
7115 | * @}
|
---|
7116 | */
|
---|
7117 |
|
---|
7118 | /**
|
---|
7119 | * @}
|
---|
7120 | */
|
---|
7121 |
|
---|
7122 | #endif /* HAL_CRYP_MODULE_ENABLED */
|
---|
7123 |
|
---|
7124 |
|
---|
7125 | /**
|
---|
7126 | * @}
|
---|
7127 | */
|
---|
7128 | #endif /* TinyAES or CRYP*/
|
---|
7129 | /**
|
---|
7130 | * @}
|
---|
7131 | */
|
---|
7132 |
|
---|
7133 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
---|